

ශී ලංකා විභාග දෙපාර්තමේන්තුව අ.පො.ස. (උ.පෙළ) විභාගය - 2020

31 - වනාපාර සංඛනානය පැරණි නිර්දේශය

මෙය උත්තරපතු පරීකෳකවරුන්ගේ පුයෝජනය සඳහා සකස් කෙරිණි. පුධාන/ සහකාර පරීකෳක රැස්වීමේ දී ඉදිරිපත්වන අදහස් අනුව මෙහි වෙනස්කම් කරනු ලැබේ.

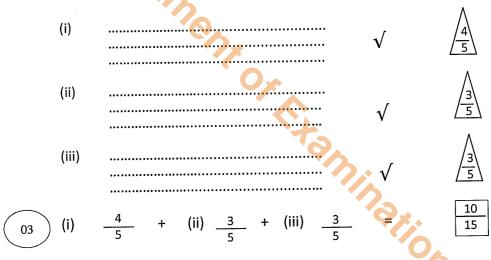
අ.පො.ස. (උසස් පෙළ) විභාගය - 2020

31 - වනපාර සංඛනනය (පැරණි නිර්දේශය)

ලකුණු බෙදී යන ආකාරය

අවසාන ලකුණ =
$$50 + \frac{100}{2}$$

=<u>100</u>


Minarions

උත්තරපතු ලකුණු කිරීමේ පොදු ශිල්පීය කුම

උත්තරපතු ලකුණු කිරීමේ හා ලකුණු ලැයිස්තුවල ලකුණු සටහන් කිරීමේ සම්මත කුමය අනුගමනය කිරීම අනිවාර්යයෙන් ම කළ යුතුවේ. ඒ සඳහා පහත පරිදි කටයුතු කරන්න.

- උත්තරපතු ලකුණු කිරීමට රතුපාට බෝල් පොයින්ට් පැනක් පාවිච්චි කරන්න.
- සෑම උත්තරපතුයකම මුල් පිටුවේ සහකාර පරීකෂක සංකේත අංකය සටහන් කරන්න.
 ඉලක්කම් ලිවීමේදී පැහැදිලි ඉලක්කමෙන් ලියන්න.
- 3. ඉලක්කම් ලිවීමේදී වැරදුණු අවස්ථාවක් වේ නම් එය පැහැදිලිව තනි ඉරකින් කපා හැර නැවත ලියා කෙටි අත්සන යොදන්න.
- 4. එක් එක් පුශ්නයේ අනු කොටස්වල පිළිතුරු සඳහා හිමි ලකුණු ඒ ඒ කොටස අවසානයේ △ ක් තුළ ලියා දක්වන්න. අවසාන ලකුණු පුශ්න අංකයත් සමඟ □ ක් තුළ, භාග සංඛාාවක් ලෙස ඇතුළත් කරන්න. ලකුණු සටහන් කිරීම සඳහා පරීකෳකවරයාගේ පුයෝජනය සඳහා ඇති තීරුව භාවිත කරන්න.

උදාහරණ : පුශ්න අංක 03

බනුවරණ උත්තරපතු : (කවුළු පතුය)

- 1. අ.පො.ස. (උ.පෙළ) හා තොරතුරු තාක්ෂණ විභාගය සඳහා කවුළු පතු දෙපාර්තමේන්තුව මගින් සකසනු ලැබේ. නිවැරදි වරණ කපා ඉවත් කළ සහතික කරන ලද කවුළුපතක් ඔබ වෙත සපයනු ලැබේ. සහතික කළ කවුළු පතුයක් භාවිත කිරීම පරීකෂකගේ වගකීම වේ.
- 2. අනතුරුව උත්තරපතු හොඳින් පරීක්ෂා කර බලන්න. කිසියම් ප්‍‍රශ්නයකට එක් පිළිතුරකට වඩා ලකුණු කර ඇත්නම් හෝ එකම පිළිතුරක්වත් ලකුණු කර නැත්නම් හෝ වරණ කැපී යන පරිදි ඉරක් අඳින්න. ඇතැම් විට අයදුම්කරුවන් විසින් මුලින් ලකුණු කර ඇති පිළිතුරක් මකා වෙනත් පිළිතුරක් ලකුණු කර තිබෙන්නට ප්‍රඑවන. එසේ මකන ලද අවස්ථාවකදී පැහැදිලිව මකා නොමැති නම් මකන ලද වරණය මත ද ඉරක් අඳින්න.
- 3. කවුළු පතුය උත්තරපතුය මත නිවැරදිව තබන්න. නිවැරදි පිළිතුර ✓ ලකුණකින් ද, වැරදි පිළිතුර 0 ලකුණකින් ද වරණ මත ලකුණු කරන්න. නිවැරදි පිළිතුරු සංඛෲව ඒ ඒ වරණ තී්රයට පහළින් ලියා දක්වන්න. අනතුරුව එම සංඛෲ එකතු කර මුළු නිවැරදි පිළිතුරු සංඛෲව අදාළ කොටුව තුළ ලියන්න.

වපුනගත රචනා හා රචනා උත්තරපතු :

- 1. අයදුම්කරුවන් විසින් උත්තරපතුයේ හිස්ව තබා ඇති පිටු හරහා රේඛාවක් ඇඳ කපා හරින්න. වැරදි හෝ නුසුදුසු පිළිතුරු යටින් ඉරි අඳින්න. ලකුණු දිය හැකි ස්ථානවල හරි ලකුණු යෙදීමෙන් එය පෙන්වන්න.
- 2. ලකුණු සටහන් කිරීමේදී ඕවර්ලන්ඩ් කඩදාසියේ දකුණු පස තී්රය යොදා ගත යුතු වේ.
- 3. සෑම පුශ්නයකටම දෙන මුළු ලකුණු උත්තරපතුයේ මුල් පිටුවේ ඇති අදාළ කොටුව තුළ පුශ්න අංකය ඉදිරියෙන් අංක දෙකකින් ලියා දක්වන්න. පුශ්න පතුයේ දී ඇති උපදෙස් අනුව පුශ්න තෝරා ගැනීම කළ යුතුවේ. සියලු ම උත්තර ලකුණු කර ලකුණු මුල් පිටුවේ සටහන් කරන්න. පුශ්න පතුයේ දී ඇති උපදෙස්වලට පටහැනිව වැඩි පුශ්න ගණනකට පිළිතුරු ලියා ඇත්නම් අඩු ලකුණු සහිත පිළිතුරු කපා ඉවත් කරන්න.
- 4. පරීකෂාකාරීව මුළු ලකුණු ගණන එකතු කොට මුල් පිටුවේ තියමිත ස්ථානයේ ලියන්න. උත්තරපතුයේ සෑම උත්තරයකටම දී ඇති ලකුණු ගණන උත්තරපතුයේ පිටු පෙරළමිත් තැවත එකතු කරන්න. එම ලකුණ ඔබ විසින් මුල් පිටුවේ එකතුව ලෙස සටහන් කර ඇති මුළු ලකුණට සමාන දැයි නැවත පරීකෂා කර බලන්න.

ලකුණු ලැයිස්තු සකස් කිරීම :

සියලු ම විෂයන්හි අවසාන ලකුණු ඇගයීම් මණ්ඩලය තුළදී ගණනය කරනු නොලැබේ. එබැවින් එක් එක් පතුයට අදාළ අවසාන ලකුණු වෙන වෙනම ලකුණු ලැයිස්තුවලට ඇතුළත් කළ යුතු ය. I පතුය සඳහා බහුවරණ පිළිතුරු පතුයක් පමණක් ඇති විට ලකුණු ලැයිස්තුවට ලකුණු ඇතුළත් කිරීමෙන් පසු අකුරෙන් ලියන්න. අනෙකුත් උත්තරපතු සඳහා විස්තර ලකුණු ඇතුළත් කරන්න. 51 විතු විෂයයේ I, II හා III පතුවලට අදාළ ලකුණු වෙන වෙනම ලකුණු ලැයිස්තුවල ඇතුළත් කර අකුරෙන් ද ලිවිය යුතු වේ.

සියලු ම හිමිකම් ඇවිරිණි / (முழுப் பதிப்புரிமையுடையது / $All\ Rights\ Reserved$)

(පැරණි නිර්දේශය/பழைய பாடத்திட்டம்/Old Syllabus)

gom நிறு අදුපුර්තුවේන්තුව ශ් ලංක විභාග දෙපාර්තුවේන්තුව නිය සිටිය සිට සිටිය සිට සිටිය සිට සිටිය සිට සිටිය සි

අධාායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2020 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2020 General Certificate of Education (Adv. Level) Examination, 2020

වනපාර සංඛනනය வணிகப் புள்ளிவிவரவியல் Business Statistics

்சැය சෙුකයි இரண்டு மணித்தியாலம் Two hours

උපදෙස්:

- 💥 සියලු ම පුශ්නවලට පිළිතුරු සපයන්න.
- * උත්තර පතුයේ නියමිත ස්ථානයේ ඔබේ විභාග අංකය ලියන්න.
- # සංඛාන වගු සපයනු ඇත. ගණක යන්තු භාවිතයට ඉඩ දෙනු නො ලැබේ.
- 💥 උත්තර පතුයේ දී ඇති උපදෙස් ද සැලකිල්ලෙන් කියවා පිළිපදින්න.
- * 1 සිට 50 තෙක් එක් එක් පුශ්නයට (1),(2),(3),(4),(5) යන පිළිතුරුවලින් නිවැරදි හෝ ඉතාමත් ගැළපෙන හෝ පිළිතුර තෝරාගෙන, එය උත්තර පතුගේ පසුපස දැක්වෙන උපදෙස් පරිදි කතිරයක් (X) යොදා දක්වන්න.
- 1. පහත දැක්වෙන කුමන පුකාශය සතා මේ ද?
 - (1) පුාථමික දත්ත හෝ ද්වීතියික දත්ත භාවිත කිරීමට තීරණය කිරීමේ දී සලකා බැලිය යුතු එකම කොන්දේසිය විශ්වාසනීයත්වය වේ.
 - (2) සංගහන පරාමිතිය සහ පරාමිතිය සඳහා නිම්තය අතර වෙනසට නියැඳුම් දෝෂය යැයි කියනු ලැබේ.
 - (3) තිශ්-පුතිචාර දෝෂය නොතියැඳුම් දෝෂ සඳහා නිදසුනක් වේ.
 - (4) අධාායනයක දී සංකීර්ණ පුශ්න රාශියකට පිළිතුරු අවශා නම් වඩාත්ම යෝගා කුමය වන්නේ ස්වයං ගණන් ගැනීමේ කුමයයි.
 - (5) නියැඳි සමීක්ෂණයකින් ලබාගන්නා පුතිඵල සමස්ත සංගහනය හැදැරීමෙන් ලබාගන්නා පුතිඵලවලට වඩා විශ්වාසනීය විය නොහැකි ය.
- 2. පහත දැක්වෙන පුකාශ සලකන්න.
 - A පයි සටහනක් යනු පුතිශත සංරචක තීරූ සටහනක තනි කීරුවකින් නිරූපණය කළ හැකි දන්ත වෘත්තමය වශයෙන් පුකාශ කිරීමකි.
 - B ආදායම සංඛානත වනාප්තියක ස්වරූපයෙන් දී ඇති වීට ලොරෙන්ස් වකුයක් ගොඩනැගිය නොහැකි ය.
 - C Z වකුයක චල මධාායක වකුය මඟින් වාාාපාර ආයතනයක විකුණුම්වල උපනතිය නිරූපණය කරයි. ඉහත පුකාශවලින් සතා වන්නේ,
 - (1) A පමණි.

(2) C පමණි.

(3) A හා B පමණි.

(4) A හා C පමණි.

- (5) A, B හා C සියල්ල ම ය.
- 3. කේන්දුක පුවණතාව පිළිබඳ පහත දැක්වෙන පුකාශ සලකන්න.
 - A අන්තා අගයන්ට වැඩි භාරයක් දිය යුතු නම් මධාස්ථය සුදුසු සාමානා අගයක් නොවේ.
 - B ඕනෑම දත්ත අගයක් සෘණ වන විට ගුණේත්තර මධානනාය ගණනය කළ නොහැකි ය.
 - C විචලායක වාර්ෂික චෙනස්වීම් අනුපාතිකය මැනීමට හරාත්මක මධානාය යොදාගනු ලැබේ. ඉහත පුකාශ චලින් සතා වන්නේ,
 - (1) A පමණි.

(2) A සහ B පමණි.

(5) A, B හා C සියල්ල ම ය.

(3) A සහ C පමණි.

- (4) B සහ C පමණි.
- පහත දැක්වෙන කුමන පුකාශය සතා වේ ද?
 දශම අගයන් සහිත නිරීක්ෂණ සඳහා වෘත්ත සහ පතු සටහන ගොඩනැගිය නොහැකි ය.
 - (2) කොටු සහ කෙදි සටහනක කොටු සමාන නම්, වාහප්තිය හරියටම සමමිතික වේ.
 - (3) කොටු සහ කෙදි සටහනක දකුණු කෙන්දෙහි විශාලම අගයන් 25% අඩංගු වේ.
 - (4) බහුගුණ තීරු සටහන යනු සංරචක තීරු සටහනකින් නිරූපිත දත්ත ඉදිරිපත් කළ හැකි විකල්ප කුමයකි.
 - (5) පංති පුාත්තර අසමාත නම් සංඛ්‍යාත බහුඅශුයෙන් මායිම් වන පුදේශයේ ක්ෂේතුඵලය ජාල රේඛයෙහි සෘජුකෝණාශුයන්ගේ ක්ෂේතුඵලවල එකතුවට සමාන නොවේ.

[අපවැති පිටව වලන්න

															_
	ලැබේ. 2	කිසියම් (පවුලක්	එම ම	ාස හත	රක කා	ෘක් පිළි ලදෝ දී (නා මිල	මසක	ට රුප්යල	ද් 60, 1 ද් 600 ක්	100, 120, දී බැගින් කි	150 මි 3රි සඳ	්ල ග හා විර	ණන්වලට යදම් කරන) විකුණනු ග්නේ නම්,
	^{9ධකට} (1) රු.					02.00	(3)	රු.	107.50	(4)	σ _ι . 110.	00	(5)	σ _ι . 150.0	00
	කිසියම් ගණන වන්නේ	ශ්දී 12	යක නි 2 වශල	රීක්ෂව යන් ඉ	ෝ 10ක ගත අ	ගුණෝ ැති බව	්ත්තර ම පසුව ෙ)ධාපප සොය	තසය 14.2 ා ගන්නා	? ලෙස ලදී. නි	ගණනය : වැරදි කර	කරන (න ලද	ලදී. : ගුණ	නිරීක්ෂිත ණේත්තර (අගය 21, මධානාසය
		.2(1.75	5/10				(2)	14	.2(0.57)	1/10		•	(3)	(24.85)	1/10
	(4) 8.1						_{a,} (5)	24	.85						
7.	අපකිර	ණය පිළි	ිබඳ පෘ	ගත දැ	ක්වෙන	පුකාශ	සලකප	්න.						.	
	Α	- සම්මා සිදුවේ		ාමනය	සමඟ	සසදන	වීව මධ)ා නා	පය අපගම)නය ණ	කරෙහි අ2	න්තාල ද	අගයෘ	ත්ගේ අඩු	බලපෑමක්
	В	– දත්ත	කුලකශ	ෘක සිය	පලුම අග	ගයන්ට :	නියතයඃ	ක් එස	ාතු කළ වි	ට ලැබේ)න අගයප	ත්ගේ වි	වලන	ා සංගුණක	ාය වෙනස්
	C	නො - විචල		හ සම්	මත අද	3ගමනය	ා යන ම	•දකට	ම එකම	මිනුම් ජ	්කකයක් ම	පවතී.			
		ූකාශව ((0)		
		පමණි.							හා B පම B හා C		® (3		(3)	A හා C	පුමණ.
		හා C ප										_	_	0.00	
8.	කිසියම්) විෂයක	් සඳහ	යක්ත ය	කණ්ඩ)ායමක	ලකුණු (පහත	දැක්වෙන	ා වෘත්ස	ා සහ පතු) සටහ	න ම	ගත තිරු	පණය වේ.
	3	1	3		3										
	4	3	4	5	6	8	8								
	5	0	1	4	5	6	8								
	6	0	3	3	6	8									
	7	0	2	5	8	9	0				42				
	8	7						, ami							
	<u>මෙම</u> (වාහප්තිර	ය සඳහ						වන්නේ,				,,,,,,,	A 10	
	(1) 0			Ť	2) 0.0		·) 0.	.07		0.09			0.18	
9.	නිරීක්	300 10	0ක එ	ක් එක්	් අගලෙ	ූන් 5. 1	අගය	අඩු	කරන ලදී පියැද් මිර	. අපග්	මනයන්ගෙ - ගුණුකුය	ග් එකා වන්නෙ	නුව (ප්	සහ අපග	මනයත්ගේ
	වර්ගය (1) 1				දින් − 10 2) 38°			වාසාස) 4(ංගුණකය) 78%	ටවාමව	., (5)	80%	
							·	,	, , , ,		O				
10.	පහත	දැක්වෙ	න කුම	න පුක	ාශය අ	සෙතන ල	ව ද?	m² ~ ~ ~ ^	Same Since	l anné)				
	(1) E	තුර්ථක න්ත නර	මගපත කයක)නය ඉ මධාන	කෙරෙහි තහයේ) අනතා සිට අප	6 අගයප ගමනය:	තගෙ න්ගේ	බලපෑමක ් එකතුව	ා පතාල නිතරම	නැත. බිංදුව ජේ	ð.			
	(3) e	යන කූල බෙහන	වාසාප්ස් වාසාප්ස්	තියක ව	වීවෘත	අන්න ද	හේත පං	ාති ප	වතින වීර) පියර්	ංන්ගේ කු	ටිකතා	దొంග్	ුණකය ග	ණනය කළ
	(4)	නාහැකි සෙට	ි යා. වාසයේ	هـــه	TO 00 66 6	തറാം ക്	Aca eaco	ล คะ	מאר איז המרא	ළාහ න	න්වන චූ	තර්ථක	_ යේ ම)ධාපනාපය	වේ.
	(4) to (5) to	ාමමතක _J මත වා	, වනාප හප්තිය:	තායක ක් සඳ	හා බනු කරගා	ගත වකි)ම සංගු	සු රු ණක	ු බිංදුව ල ය	සය දැ වේ.	<u> </u>				
11.		ම් වාපාස් තියේ ම				කුවිකතා	ා සංගුණ	ගිකය	0.5ක් ද	වීවලතා	: සంගුණක	ග 409	‰ක් ම	ද මාතය 🤅	80ක් ද වේ.
	(1) 4	0		(2	2) 10	0	(3	3) 1	60	(4	1) 200	•	(5)	320	
<u> </u>										***************************************				් තන්වැ	නි පිටව බලන්න

12.	කිසියම් වාහප්තියක බෝව්ලිගේ කුටිකතා සංගුණකය -0.8 ක් වේ. පහළ සහ ඉහළ චතුර්ථක වල එකතුව 100 නම් සහ මධාප්ථය 58 නම් පහළ සහ ඉහළ චතුර්ථක සොයන්න.
	(1) $Q_1 = 20$, $Q_3 = 80$ (2) $Q_1 = 25$, $Q_3 = 75$ (3) $Q_1 = 30$, $Q_3 = 70$ (4) $Q_1 = 35$, $Q_3 = 65$ (5) $Q_1 = 40$, $Q_3 = 60$
13.	පුතීපායනය සහ සහසම්බන්ධතාව සම්බන්ධයෙන් පහත දැක්වෙන කුමන පුකාශය සතා වේ ද? (1) X සහ Y අතර ඉහළ සහසම්බන්ධතාවක් මගින් Y හි වෙනස්වීම කෙරෙහි X හේතුවන බවත් X හි වෙනස්වීම කෙරෙහි Y හේතුවන බවත් X හි වෙනස්වීම කෙරෙහි Y හේතුවන බවත් අදහස් වේ. (2) සරල රේගීය පුතීපායන සමීකරණයකට අමතර ස්වායත්ත විචලායක් ඇතුළත් කරන විට දෝෂ පදය වැඩි වේ. (3) X විචලායෙහි සියලු අගයන්ගෙන් නියතයක් අඩු කරන්නේ නම් X මත Y හි පුකීපායන සංගුණකය වෙනස් වේ. (4) පුමාණාත්මක දත්ත සඳහා ස්පියර්මන්ගේ තරා සහසම්බන්ධතා සංගුණකය ගණනය කළ නොහැකි ය. (5) ස්පියර්මන්ගේ තරා සහසම්බන්ධතා සංගුණකය තරා අතර කාර්ල් පියර්සන්ගේ සුණිත සූර්ණ සහසම්බන්ධතා සංගුණකයට සමාන වේ.
14.	පුතීපායනය සම්බන්ධයෙන් පහත දැක්වෙන පුකාශ සලකන්න. A - X මත Y හි පුතීපායනය සරල රේඛීය නම් X වෙනස් වන විට Y හි අපේක්ෂිත අගය හරියටම සරල රේඛාවක් මත වෙනස් වේ. B - X මත Y හි පුතීපායන සමීකරණය $\hat{Y} = -10 + 5x$ නම් Y මත X හි පුතීපායන සමීකරණය $\hat{X} = 0.2y - 2$ වේ.
	C - පුතීපායනය සඳහා අඩුතමවර්ග කුමය යොදාගත හැකි වන්නේ පුතීපායන රේඛාවේ හෝ වකුයේ ස්වරුපය දන්නාවිට පමණි. ඉහත පුකාශවලින් සතා වන්නේ, (1) A පමණි. (2) B පමණි. (3) A හා B පමණි. (4) A හා C පමණි.
15.	පොහොර (X) මත වී අස්වැන්න (Y) සඳහා අනුසීහුමය කරන ලද පුතීපායන සමීකරණය පහත දැක්වේ. $\hat{Y}=36.4+0.05x$ ඉහත සමීකරණය සම්බන්ධයෙන් සතා පුකාශය වන්නේ, (1) \hat{Y} යනු පොහොර මට්ටම x වන විට වී අස්වැන්න වේ. (2) \hat{Y} යනු පොහොර මට්ටම x වන විට වී අස්වැන්නෙහි අපේක්ෂිත අගය වේ. (3) \hat{Y} යනු පොහොර මට්ටම x වන විට වී අස්වැන්නෙහි අපේක්ෂිත අගයෙහි නිමිතය වේ. (4) පොහොර මට්ටම එක ඒකකයකින් වැඩි කරන්නේ නම් වී අස්වැන්න ඒකක 36.45 කින් වැඩි වේ. (5) පොහොර මට්ටම එක ඒකකයකින් වැඩි වන විට වී අස්වැන්න ඒකක 36.45 කින් වැඩි වේ.
16.	සම්භාවිතා පුවේශ සම්බන්ධයෙන් පහත දැක්වෙන පුකාශ සලකන්න. A - පරීක්ෂණය පුනරාවර්තව සිදු කළ නොහැකි වන විට පුද්ගලනිඃශින සම්භාවිතා පුවේශය වඩාත් අදාල වේ. B - සසම්භාවී පරීක්ෂණය වන්නේ කිසියම් තොගයකින් අයිතමයක් සසම්භාවී ලෙස තෝරා ගැනීම නම්, යම් සිද්ධියක සම්භාවිතාව පරීක්ෂණය කිරීමෙන් තොරව ලබා ගත හැකි ය. C - සාපේක්ෂ සංඛානත පුවේශය යටතේ ලබා ගන්නා සිද්ධියක සම්භාවිතාව එම සිද්ධියෙහි සතා සම්භාවිතාවෙන් වෙනස් විය හැකි ය. ඉහත පුකාශවලින් සතා වන්නේ, (1) B පමණි. (2) A හා B පමණි. (3) A හා C පමණි.
17.	(4) B හා C පමණි. (5) A,B හා C සියල්ල ම ය. කිසියම් කණ්ඩායමක පිරිමි ළමයි තුන්දෙනෙක් සහ ගැහැණු ළමයි දෙදෙනෙක් සිටිති. මෙම කණ්ඩායමෙන් තුන්දෙනෙක් සසම්භාවී ලෙස තෝරා ගන්නේ නම්, පිරිමි ළමයි දෙදෙනෙක් සහ ගැහැණු ළමයි එක්කෙනෙක් හෝ පිරිමි ළමයි එක්කෙනෙක් සහ ගැහැණු ළමයි දෙදෙනෙක් තෝරාගත් අය අතර සිටීමේ සම්භාවිතාව සොයන්න.
	(1) $\frac{1}{5}$ (2) $\frac{3}{10}$ (3) $\frac{1}{2}$ (4) $\frac{3}{5}$ (5) $\frac{9}{10}$

(4) $\frac{1-p_1-p_2+p_3}{1-p_1}$ (5) $\frac{1-p_1-p_2-p_3}{1-p_2}$ 21. පහත දැක්වෙන පුකාශ සලකන්න. A - X හසම්භාවී විවලාපයෙහි අපේක්ෂික අගය යනු X විය හැකි අගයන්ගේ සම්භාවිකාවන් හරින මධානායකි. B - සසම්භාවී විවලාපයක අපේක්ෂික අගය යනු උපරිම සම්භාවිකාව සහිතව සිදුවන අගය වේ. C - X යනු සසම්භාවී විවලාපයක් නම් සහ c සහ d නියක නම්, $Var(cX \pm d) = cVar(X) \pm d$ වේ ඉහත පුකාශවලින් සතාව වන්නේ. (1) A පමණි. (2) A හා B පමණි. (3) A හා (4) B හා C පමණි. (4) B හා C පමණි. (5) A, B හා C සියල්ල ම ය. 22. ඇණ නිෂ්පාදකයෙක් ඔහුගේ නිෂ්පාදනයෙන් සාමානාහයෙන් 2.5%ක් දෝෂ සහිත වන බව පුකා ගැණුමකරුවෙක්, ඇණ 100ක පෙවටියක් දෝෂ අණ 4කට වඩා අඩංගු නොවේ නම් එය මිල දී ගනී. ග විසින් ඇණ පෙට්ටියක් මිල දී ගැනීමේ ආසන්න සම්භාවිකාව සොයන්න. (1) 0.1088 (2) 0.2424 (3) 0.5438 (4) 0.7576 (5) 0.891 23. එක් එක් පුශ්නය සඳහා පිළිතුරු 5ක් සහිත බහුවරණ පුශ්න 10ක් අඩංගු පරීක්ෂණයෙකට සිෂායෙක් සිෂායෙක් සිෂායයා එක් එක් පුශ්නයට එක පිළිතුරුක් නිවැරදී පිළිතුරු ලෙස සලකා සසම්භාවී ලෙස පිළිතුරු සප සමණාවිතාව කුමක් ද? (1) 0.0064 (2) 0.0328 (3) 0.9672 (4) 0.9936 (5) 0.995 24. යිම කැබලි 10000ක අර්තාපල් අස්වැන්න මධානාය 650 kg සහ සම්මන අපගමනය 30 kg සහිත පුමන පවතී. හොදම බිම කැබලි 1000 හි අඩුම අස්වැන්න වන්නේ, (1) 578 kg ය. (2) 612 kg ය. (3) 688 kg ය. (4) 719 kg ය. (5) 962 k												
 (1) \$\frac{1}{5}\$ (2) \$\frac{1}{4}\$ (3) \$\frac{1}{3}\$ (4) \$\frac{1}{2}\$ (5) \$\frac{3}{4}\$ 19. \$A\$ සහ \$B\$ යනු ඕනෑම සිද්ධි අදකස් යැයි සිතන්න. \$A\$ සහ \$B\$ සිද්ධි අදකම සිදුවීමේ සම්භාවිතාව, \$A\$ සිදුවන නමුත් \$A\$ සිදුනොවීමේ සම්භාවිතාව යන සියල්ලම \$k\$ වලට \$A\$, \$B\$ සිද්ධිවලින් යවත් පිරිසෙයින් එක සිද්ධියක් සිදුවීමේ සම්භාවිතාව වන්නේ, (1) \$k\$ (2) \$2\$	තර ඒවායින් ,											18.
19. <i>A</i> සහ <i>B</i> යනු මනෑම සිද්ධි දෙකක් යැයි සිතන්න. <i>A</i> සහ <i>B</i> සිද්ධි දෙකම සිදුවීමේ සම්භාවිතාව, <i>A</i> සිදුවී සිදුනොවීමේ සම්භාවිතාව සහ <i>B</i> සිදුවන නමුත් <i>A</i> සිදුනොවීමේ සම්භාවිතාව සහ සියල්ලම k වලට <i>A</i> , <i>B</i> සිද්ධිවලින් යවත් පිරිසෙයින් එක සිද්ධියක් සිදුවීමේ සම්භාවිතාව වන්නේ. (1) k (2) 2k (3) 3k (4) 3k² (5) k³ 20. <i>A</i> සහ <i>B</i> යනු <i>P</i> (<i>A</i>) = <i>p</i> ₁ , <i>P</i> (<i>B</i>) = <i>p</i> ₂ සහ <i>P</i> (<i>A</i> ∩ <i>B</i>) = <i>p</i> ₃ සහිත සිද්ධි දෙකක් නම් <i>P</i> (<i>A</i> <i>B</i> <i>P</i>) වන්නේ (1)		න්තේ,	තාව වන්වෙ	ම් සම්තාවිත	ම් A සිදුවීමෙ	$>\!\!P(B)$ නම්	වේ. $P(A)$	විතාව 3 ල	මේ සම්භ	ත් සිදු තොවී	එකක්ව	
සිදුනොවීමේ සම්භාවිතාව සහ B සිදුවන නමුත් A සිදුනොවීමේ සම්භාවිතාව යන සියල්ලම k වලට A , B සිද්ධිවලින් යටත් පිරිසෙයින් එක සිද්ධියක් සිදුවීමේ සම්භාවිතාව වන්නේ, (1) k (2) $2k$ (3) $3k$ (4) $3k^2$ (5) k^3 20. A සහ B යනු $P(A) = p_1, P(B) = p_2$ සහ $P(A \cap B) = p_3$ සහිත සිද්ධි දෙකක් නම් $P(A^{\dagger} B^{\dagger})$ වන්නෙ (1) $\frac{p_1 + p_2 - p_3}{1 - p_1}$ (2) $\frac{p_1 + p_2 - p_3}{1 - p_2}$ (3) $\frac{1 - p_1}{1}$ (2) $\frac{p_1 + p_2 - p_3}{1 - p_2}$ (3) $\frac{1 - p_1}{1}$ (4) $\frac{1 - p_1 - p_2 + p_3}{1 - p_1}$ (5) $\frac{1 - p_1 - p_2 - p_3}{1 - p_2}$ (3) $\frac{1 - p_1}{1}$ (5) $\frac{1 - p_1 - p_2 - p_3}{1 - p_2}$ (7) $\frac{1 - p_1 - p_2 - p_3}{1 - p_2}$ (9) $\frac{1 - p_1}{1 - p_2}$ (9) $\frac{1 - p_1}{1 - p_2}$ (1) පහත දැක්වෙන පුකාශ සලකන්න. $A - X$ හසමහාවී වචලාපයෙහි අපේක්ෂික අගය යනු X විය හැකි අගයන්ගේ සම්භාවිතාවන් හරිනා වටලාපයක් අපේක්ෂික අගය යනු X විය හැකි අගයන්ගේ සම්භාවිතාවන් හරින වටලාපයක් අපේක්ෂික අගය යනු X විය හැකි අගයන්ගේ සම්භාවිතාවන් හරින වටලාපයක් අවේකයන් සහ X සහ X සහමණාවිතාව සහිතව සිදුවන අගය වෙ. X යනු සහමහාවී වචලාපයක් නම් සහ X සහ X සහමණා සිදුවන අගය වේ. (2) X හා X සහමණා සහව සහිතව සිදුවන අගය වේ. (3) X හා X සමණි. (4) X හා X සහමණා X වෙන්න. (5) X සහ X සහමණා X වෙන්න. (3) X හා X සහමණා X සහව X සහම් X සහව X		$(5) \frac{3}{4}$	(5)	$\frac{1}{2}$	(4)	$\frac{1}{3}$	(3)	$\frac{1}{4}$	(2)		(1) $\frac{1}{5}$	
20. $A \ max \ B \ mag} \ P(A) = p_1, P(B) = p_2 \ max \ P(A \cap B) = p_3 \ max \ ma$	න නමුත් <i>B</i> සමාන වේ.	ෑම k වලට සමා: ි	සියල්ලම l	ාිතාව යන (න්නේ,	මේ සම්භාවි හාවිතාව ව	සිදුනොවී වීමේ සම්භ	ංතමුත් <i>A</i> ද්ධියක් සිදු	B සිදුවන lන් එක සිද්	විතාව සහ ග් පිරිසෙරි	ාවීමේ සම්භාවි	සිදුතෙ	19.
(1) $\frac{P_1 + P_2 - P_3}{1 - p_1}$ (2) $\frac{P_1 + P_2 - P_3}{1 - p_2}$ (3) $\frac{1 - p_1}{1}$ (4) $\frac{1 - p_1 - p_2 + p_3}{1 - p_1}$ (5) $\frac{1 - p_1 - p_2 - p_3}{1 - p_2}$ (7) $\frac{1 - p_1 - p_2 - p_3}{1 - p_2}$ (8) $\frac{1 - p_1 - p_2 - p_3}{1 - p_2}$ (9) $\frac{1 - p_1 - p_2 - p_3}{1 - p_2}$ (9) $\frac{1 - p_1 - p_2 - p_3}{1 - p_2}$ (9) $\frac{1 - p_1 - p_2 - p_3}{1 - p_2}$ (9) $\frac{1 - p_1 - p_2 - p_3}{1 - p_2}$ (10) $\frac{1 - p_1 - p_2 - p_3}{1 - p_2}$ (11) $\frac{1 - p_1 - p_2 - p_3}{1 - p_2}$ (12) $\frac{1 - p_1 - p_2 - p_3}{1 - p_2}$ (13) $\frac{1 - p_1 - p_2 - p_3}{1 - p_2}$ (14) $\frac{1 - p_1 - p_2 - p_3}{1 - p_2}$ (15) $\frac{1 - p_1 - p_2 - p_3}{1 - p_2}$ (16) $\frac{1 - p_1 - p_2 - p_3}{1 - p_2}$ (17) $\frac{1 - p_1 - p_2 - p_3}{1 - p_2}$ (17) $\frac{1 - p_1 - p_2 - p_3}{1 - p_2}$ (18) $\frac{1 - p_1 - p_2 - p_3}{1 - p_2}$ (19) $\frac{1 - p_1 - p_2 - p_3}{1 - p_2}$ (19) $\frac{1 - p_1 - p_2 - p_3}{1 - p_2}$ (19) $\frac{1 - p_1 - p_2 - p_3}{1 - p_2}$ (19) $\frac{1 - p_1 - p_2 - p_3}{1 - p_2}$ (19) $\frac{1 - p_1 - p_2 - p_3}{1 - p_2}$ (10) $\frac{1 - p_1 - p_2 - p_3}{1 - p_2}$ (11) $\frac{1 - p_1 - p_2 - p_3}{1 - p_2}$ (12) $\frac{1 - p_1 - p_2 - p_3}{1 - p_2}$ (13) $\frac{1 - p_1 - p_2 - p_3}{1 - p_2}$ (14) $\frac{1 - p_1 - p_2 - p_3}{1 - p_2}$ (15) $\frac{1 - p_1 - p_2 - p_3}{1 - p_2}$ (16) $\frac{1 - p_1 - p_2 - p_3}{1 - p_2}$ (17) $\frac{1 - p_1 - p_2 - p_3}{1 - p_2}$ (18) $1 - p_2$		$(5) k^3$	(5)	3k ²	(4)	3k	(3)	2k	(2)		(1) k	
(4) $\frac{1-p_1-p_2+p_3}{1-p_1}$ (5) $\frac{1-p_1-p_2-p_3}{1-p_2}$ 21. පහත දැක්වෙන ප්‍රකාශ සලකන්න. A - X හසම්භාවී විවලාශයෙහි අපේක්ෂික අගය යනු X විය හැකි අගයන්ගේ සම්භාවිතාවන් හරික මධානායකි. B - සසම්භාවී විවලාශයක අපේක්ෂික අගය යනු උපරිම සම්භාවිතාව සහිතව සිදුවන අගය වේ. C - X යනු සසම්භාවී විවලාශයක් නම් සහ c සහ d නියක නම්, $Var(cX \pm d) = cVar(X) \pm d$ වේ ඉහත ප්‍රකාශවලින් සතාව වන්නේ, (1) A පමණි. (2) A හා B පමණි. (3) A හා (4) B හා C පමණි. (4) B හා C පමණි. (5) A, B හා C සියල්ල ම ය. 22. ඇණ නිෂ්පාදකයෙක් ඔහුගේ නිෂ්පාදනයෙන් සාමානාශයෙන් 2.5%ක් දෝෂ සහිත වන බව ප්‍රකා ගැණුම්කරුවෙක්, ඇණ 100ක පෙවටියක් ලේෂ අයන්න සම්භාවිතාව සොයන්න. (1) 0.1088 (2) 0.2424 (3) 0.5438 (4) 0.7576 (5) 0.891 23. එක් එක් පුශ්නය සඳහා පිළිතුරු 5ක් සහිත බහුවරණ ප්‍රශ්න 10ක් අඩංගු පරීක්ෂණයකට ශිෂායෙක් ශිෂායො එක් එක් පුශ්නයට එක පිළිතුරක් නිවැරදී පිළිතුරු ලෙස සලකා සසමහාවී ලෙස පිළිතුරු සපසමත්වීම සඳහා ඔහු යටත් පිරිසෙයින් 60%ක් නිවැරදී පිළිතුරු ලබාගත යුතුයි. ශිෂායා විභාගය සමභාවිතාව කුමක් ද? (1) 0.0064 (2) 0.0328 (3) 0.9672 (4) 0.9936 (5) 0.999 24. බිම කැබලි 10000ක අර්තාපල් අස්වැන්න මධානාය 650 kg සහ සම්මන අපගමනය 30 kg සහිත පුමත පවතී, හොඳම බිම කැබලි 1000 හි අඩුම අස්වැන්න වන්නේ, (1) 578 kg ය. (2) 612 kg ය. (3) 688 kg ය. (4) 719 kg ය. (5) 962 k	· ,	B') වන්නේ,	D P(A' B')	දෙකක් නම්	ාහිත සිද්ධි	$p_3 = p_3$	$P(A \cap B)$) = p_2 සහ	$= p_1, P(B)$	B යනු <i>P(A)</i> =	A සහ	20.
21. පහත දැක්වෙන පුකාශ සලකන්න.	$\frac{-p_2+p_3}{-p_2}$	$(3) \ \frac{1-p_1-p_2}{1-p_2}$	(3)		$\frac{-p_3}{v_2}$	$\frac{p_1 + p_2}{1 - p_2}$	(2)			$\frac{1 + p_2 - p_3}{1 - p_1}$	(1) <u>P</u>	
A - X පසමහාවී විචලාපයෙහි අපේක්ෂික අගය යනු X විය හැකි අගයන්ගේ සම්භාවිතාවත් හරිත වටානාගයකි. B - සසම්භාවී විචලාපයක් අපේක්ෂික අගය යනු උපරිම සම්භාවිතාව සහිතව සිදුවන අගය වේ. C - X යනු සසමහාවී විචලාපයක් නම් සහ c සහ d නියත නම්, Var(cX±d) = cVar(X)±d වේ ඉහත පුකාශවලින් සතාව වන්නේ, (1) A පමණි. (2) A හා B පමණි. (3) A හා (4) B හා C පමණි. (5) A, B හා C සියල්ල ම ය. 22. ඇණ නිෂ්පාදකයෙක් ඔහුගේ නිෂ්පාදනයෙන් සාමානාගයෙන් 2.5%ක් දෝෂ සහිත වන බව පුකා ගැණුම්කරුවෙක්, ඇණ 100ක පෙව්වියක දෝෂ අණ 4කට වඩා අඩංගු නොවේ නම් එය මිල දී ගනී. ග විසින් ඇණ පෙට්ටියක් මිල දී ගැනීමේ ආසන්න සම්භාවිතාව සොයන්න. (1) 0.1088 (2) 0.2424 (3) 0.5438 (4) 0.7576 (5) 0.891 23. එක් එක් පුශ්නය සඳහා පිළිතුරු 5ක් සහිත බහුවරණ පුශ්න 10ක් අඩංගු පරීක්ෂණයකට ශිෂායෙක් ශිෂායා එක් එක් පුශ්නයට එක පිළිතුරක් නිවැරදී පිළිතුර ලෙස සලකා සසම්භාවී ලෙස පිළිතුරු සප සම්භාවිතාව කුමක් ද? (1) 0.0064 (2) 0.0328 (3) 0.9672 (4) 0.9936 (5) 0.995 24. බිම කැබලි 10 000ක අර්තාපල් අස්වැන්න මධානායය 650 kg සහ සම්මත අපගමනය 30 kg සහිත පුමත පවතී. හොඳම බිම කැබලි 1000 හි අඩුම අස්වැන්න වන්නේ, (1) 578 kg ය. (2) 612 kg ය. (3) 688 kg ය. (4) 719 kg ය. (5) 962 k					$\frac{p_2 - p_3}{p_2}$	$1-p_1-p_1-p_1-p_1-p_1-p_1-p_1-p_1-p_1-p_$	(5)		<u>L</u>	$\frac{-p_1 - p_2 + p_3}{1 - p_1}$	(4) $\frac{1}{2}$	
(1) A පමණි. (2) A හා B පමණි. (3) A හා (4) B හා C පමණි. (5) A, B හා C සියල්ල ම ය. 22. ඇණ නිෂ්පාදකයෙක් ඔහුගේ නිෂ්පාදනයෙන් සාමානායෙන් 2.5%ක් දෝෂ සහිත වන බව පුකා ගැණුම්කරුවෙක්, ඇණ 100ක පෙට්ටියක් දෝෂ ඇණ 4කට වඩා අඩංගු නොවේ නම් එය මිල දී ගනී. ග විසින් ඇණ පෙට්ටියක් මිල දී ගැනීමේ ආසන්න සම්භාවිතාව සොයන්න. (1) 0.1088 (2) 0.2424 (3) 0.5438 (4) 0.7576 (5) 0.891 23. එක් එක් පුශ්නය සඳහා පිළිතුරු 5ක් සහිත බහුවරණ පුශ්න 10ක් අඩංගු පරීක්ෂණයකට ශිෂායෙක් ශිෂායා එක් පුශ්නයට එක පිළිතුරුක් නිවැරදි පිළිතුර ලෙස සලකා සසම්භාවි ලෙස පිළිතුරු සපසමත්වීම සඳහා ඔහු යටත් පිරිසෙයින් 60%ක් නිවැරදි පිළිතුරු ලබාගත යුතුයි. ශිෂායා විභාගය සම්භාවිතාව කුමක් ද? (1) 0.0064 (2) 0.0328 (3) 0.9672 (4) 0.9936 (5) 0.999 24. බිම කැබලි 10 000ක අර්තාපල් අස්වැන්න මධානනය 650 kg සහ සම්මත අපගමනය 30 kg සහිත පුමත පවතී. හොඳම බිම් කැබලි 1000 හි අඩුම අස්වැන්න වින්නේ, (1) 578 kg ය. (2) 612 kg ය. (3) 688 kg ය. (4) 719 kg ය. (5) 962 k		ා අගය වේ.	සිදුවන අග	ාව සහිතව	සම්භාවිත	නු උපරිම	ත අගය ය	ායෙහි අපෙ ත අපේක්ෂිඃ වලෳයක් න	ාව් විචල: නොපයකි. විචලපය: මේහාවී වි	X - X සසම්භා භරිත මධ S - සසම්භාවී C - X යනු සස	I C	21.
ගැණුම්කරුවෙක්, ඇණ 100ක පෙට්ටියක් දේෂ ඇණ 4කට වඩා අඩංගු නොවේ නම් එය මිල දී ගනී. ග විසින් ඇණ පෙට්ටියක් මිල දී ගැනීමේ ආසන්න සම්භාවිතාව සොයන්න. (1) 0.1088 (2) 0.2424 (3) 0.5438 (4) 0.7576 (5) 0.891 23. එක් එක් පුශ්නය සඳහා පිළිතුරු 5ක් සහිත බහුවරණ පුශ්න 10ක් අඩංගු පරීක්ෂණයකට ශිෂායෙක් ශිෂායා එක් එක් පුශ්නයට එක පිළිතුරක් නිවැරදි පිළිතුර ලෙස සලකා සසම්භාවී ලෙස පිළිතුරු සප සමත්වීම සඳහා ඔහු යටත් පිරිසෙයින් 60%ක් නිවැරදි පිළිතුරු ලබාගත යුතුයි. ශිෂායා විභාගය සම්භාවිතාව කුමක් ද? (1) 0.0064 (2) 0.0328 (3) 0.9672 (4) 0.9936 (5) 0.999 24. බිම් කැබලි 10 000ක අර්තාපල් අස්වැන්න මධාපනාය 650 kg සහ සම්මත අපගමනය 30 kg සහිත පුමත පවතී. හොඳම බිම් කැබලි 1000 හි අඩුම අස්වැන්න වන්නේ, (1) 578 kg ය. (2) 612 kg ය. (3) 688 kg ය. (4) 719 kg ය. (5) 962 k 25. කිසියම් පුදේශයක පුද්ගලයන්ගෙන් 50%ක් කිසියම් සංවර්ධන යෝජනාවකට පක්ෂපාතී බව දක්වයි. මෙම තෝරාගත් පුද්ගලයන් 100ක සසම්භාවී නියැඳියක යටත් පිරිසෙයින් 55දෙනෙකු යෝජනාවට පක් ආසන්න සම්භාවිතාව තුමක් ද?	C පමණි.	(3) A හා C ප	(3)	ම ය.				h		පමණි.	(1) A	
23. එක් එක් පුශ්නය සඳහා පිළිතුරු 5ක් සහිත බහුවරණ පුශ්න 10ක් අඩංගු පරීක්ෂණයකට ශිෂායෙක් ශිෂායා එක් පුශ්නයට එක පිළිතුරක් නිවැරදි පිළිතුර ලෙස සලකා සසම්භාවී ලෙස පිළිතුරු සප සමත්වීම සඳහා ඔහු යටත් පිරිසෙයින් 60%ක් නිවැරදි පිළිතුරු ලබාගත යුතුයි. ශිෂායා විභාගය සම්භාවිතාව කුමක් ද? (1) 0.0064 (2) 0.0328 (3) 0.9672 (4) 0.9936 (5) 0.999 24. බිම් කැබලි 10 000ක අර්තාපල් අස්වැන්න මධානාපය 650 kg සහ සම්මත අපගමනය 30 kg සහිත පුමත පවතී. හොඳම බිම් කැබලි 1000 හි අඩුම අස්වැන්න වන්නේ, (1) 578 kg ය. (2) 612 kg ය. (3) 688 kg ය. (4) 719 kg ය. (5) 962 k 25. කිසියම් පුදේශයක පුද්ගලයන්ගෙන් 50%ක් කිසියම් සංවර්ධන යෝජනාවකට පක්ෂපාහී බව දක්වයි. මෙම තෝරාගත් පුද්ගලයන් 100ක සසම්භාවී නියැඳියක යටත් පිරිසෙයින් 55දෙනෙකු යෝජනාවට පක් අපසන්න සම්භාවිතාව කුමක් ද?	ශ කර සිටී. ැණුම්කරුව:	ා බව පුකාශ ක ල දී ගනී. ගැණුම්	හිත වන බ ම එය මිල දී	නාවේ නම්	ඩා අඩංගු ෙ	ක් 4කට වඩි	ලදා්ෂ ඇ∢	පෙ ව්ටියක	ණ 100ක	කරුවෙක්, ඇ	ഗു ക്രൂര്	22.
ශිෂායා එක් එක් පුශ්නයට එක පිළිතුරක් නිවැරදි පිළිතුර ලෙස සලකා සසම්භාවී ලෙස පිළිතුරු සපසෙමත්වීම සඳහා ඔහු යටත් පිරිසෙයින් 60%ක් නිවැරදි පිළිතුරු ලබාගත යුතුයි. ශිෂායා විභාගය සම්භාවිතාව කුමක් ද? (1) 0.0064 (2) 0.0328 (3) 0.9672 (4) 0.9936 (5) 0.999 24. බිම් කැබලි 10 000ක අර්තාපල් අස්වැන්න මධානාපය 650 kg සහ සම්මත අපගමනය 30 kg සහිත පුමත පවතී. හොඳම බිම් කැබලි 1000 හි අඩුම අස්වැන්න වන්නේ, (1) 578 kg ය. (2) 612 kg ය. (3) 688 kg ය. (4) 719 kg ය. (5) 962 k 25. කිසියම් පුදේශයක පුද්ගලයන්ගෙන් 50%ක් කිසියම් සංවර්ධන යෝජනාවකට පක්ෂපාතී බව දක්වයි. මෙම තෝරාගත් පුද්ගලයන් 100ක සසම්භාවී නියැඳියක යටත් පිරිසෙයින් 55දෙනෙකු යෝජනාවට පක් අපසන්න සම්භාවිතාව කුමක් ද?	2	(5) 0.8912	(5)	0.7576	(4	0.5438	(3)	0.2424	(2)	1088	(1) 0	
(1) 0.0064 (2) 0.0328 (3) 0.9672 (4) 0.9936 (5) 0.999 24. බිම් කැබලි 10 000ක අර්තාපල් අස්වැන්න මධානාපය 650 kg සහ සම්මත අපගමනය 30 kg සහිත පුමත පවතී. හොඳම බිම් කැබලි 1000 හි අඩුම අස්වැන්න වන්නේ, (1) 578 kg ය. (2) 612 kg ය. (3) 688 kg ය. (4) 719 kg ය. (5) 962 k 25. කිසියම් පුදේශයක පුද්ගලයන්ගෙන් 50%ක් කිසියම් සංවර්ධන යෝජනාවකට පක්ෂපාතී බව දක්වයි. මෙම තෝරාගත් පුද්ගලයන් 100ක සසම්භාවී නියැඳියක යටත් පිරිසෙයින් 55දෙනෙකු යෝජනාවට පක් ආසන්න සම්භාවිතාව කුමක් ද?	යයි. විභාගය	මිළිතුරු සපයයි. දී	ලෙස පිළිතු	සසම්තාවී ෙ	ස සලකා	පිළිතුර ලෙ	ි නිවැරදි 8	ා පිළිතුරක්	න්නයට එ නු යටත්	ා එක් එක් පුග මේ සඳහා ඔදු	ශිෂාය සමත්වී	23.
පවතී. හොඳම බිම් කැබලි 1000 හි අඩුම අස්වැන්න වන්නේ, (1) 578 kg ය. (2) 612 kg ය. (3) 688 kg ය. (4) 719 kg ය. (5) 962 k 25. කිසියම් පුදේශයක පුද්ගලයන්ගෙන් 50%ක් කිසියම් සංවර්ධන යෝජනාවකට පක්ෂපාතී බව දක්වයි. මෙම තෝරාගත් පුද්ගලයන් 100ක සසම්භාවී නියැඳියක යටත් පිරිසෙයින් 55දෙනෙකු යෝජනාවට පක් ආසන්න සම්භාවිතාව කුමක් ද?	1	(5) 0.9991	(5)	0.9936	(4	0.9672	(3)	0.0328	•			
25. කිසියම් පුදේශයක පුද්ගලයන්ගෙන් 50%ක් කිසියම් සංවර්ධන යෝජනාවකට පක්ෂපාහී බව දක්වයි. මෙම තෝරාගත් පුද්ගලයන් 100ක සසම්භාවී නියැඳියක යටත් පිරිසෙයින් 55දෙනෙකු යෝජනාවට පක් ආසන්න සම්භාවිතාව කුමක් ද?	, වාහප්තියක	සහිත පුමත වනා	30 kg සහි	අපගමනය								24.
තෝරාගත් පුද්ගලයන් 100ක සසම්භාවී නියැඳියක යටත් පිරිසෙයින් 55දෙනෙකු යෝ <mark>ජනා</mark> වට පක් ආසන්න සම්භාවිතාව කුමක් ද?	g ω.	(5) 962 kg ω.	5. (5)) 719 kg 😅	ය. (4	688 kg a	(3)	612 kg ω.	(2)	78 kg ය.	(1) 5	
(1) 0.1587 (2) 0.1841 (3) 0.3159 (4) 0.3413 (5) 0.368	පුදේශයෙන ෂපාතී වීමේ	ක්වයි. මෙම පුදේ නාවට පක්ෂපාසි	හී බව දක්වැ යෝජනාදි	ට පක්ෂපාහී 55දෙනෙකු	ංයා්ජනාවක ප්රිසෙයින් :	ංවර්ධන ගෙ ා යටත් පිරි	් කිසියම් ස නියැඳියක	සසම්භාවී	ත් 100ක	ගත් පුද්ගලය	තෝර	25.
	2	(5) 0.3682	(5)	0.3413	(4	0.3159	(3)	0.1841	(2)	. 1587	(1) 0	
26. පොකුරු නියැඳීම සම්බන්ධයෙන් පහත දැක්වෙන පුකාශ සලකත්න. A - පොකුරු අතර විචලනය කුඩා නම් පොකුරු නියැඳීම වඩාත් යෝගා වේ. B - පුර්ණ නියැඳුම් රාමුවක් නොපවතින විට ද පොකුරු නියැඳීම භාවිත කළ හැකි ය. C - අන්තෘපොකුරු සහසම්බන්ධතා සංගුණකය 1ට ආසන්න නම් පොකුරු නියැඳීම සරල සසම්බත්ව කරමටම කාර්යක්ෂම වේ.	ා තවී නියැඳී®		3 හැකි ය.	භාවිත කළ	දීම වඩාත් _' රු නියැඳීම	ඉරු නියැඳී ද පොකුර	නම් පො වතින විට	ුනය කුඩා වක් නොපෑ සම්බන්ධතා	අතර විච(සැඳුම් රාමු කුරු සහ	. – පොකුරු අ l – පුර්ණ නිය l – අන්නඃපො	Ā	26.
ඉහත පුකාශවලින් සතා වන්නේ,	_							>ත්,	හො වන්	-	-	
(1) A පමණි. (2) A සහ B පමණි. (3) A සහ (4) B සහ C පමණි. (5) A, B සහ C සියල්ල ම ය.) C පමණි.	(3) A සහ C	(3)	ල ග .			1 1		i.			
	ාති පිටව බලත්	[පස්වැති පිරි										L

Ħ.

								eni.
27.	A	– සංගහනය සසම්භ විය හැකි ය.	ග්වෙන පුකාශ සලක ගවී පිළිවෙළට පවතී	නුම් :	3	•		තාර්යක්ෂම
	В	– කුමවත් තියැඳීම් :	කුමය භාවිත කළ හැ	ක් වැ	_{ත්තේ} <u>N</u> නි	බීල අගයක් වන විට	, දී පමණි.	
	С	- කුමික නියැඳීමේ	දී තනි නියැඳියක් භා	විතලෙ	යන් සම්මත (දෝෂය ගණනය කළ	ූ නොහැකි ය.	
•	(1) A	පුකාශවලින් සතා: \ පමණි.	වන්නේ,	(2) (5)	A සහ B පාර A B සහ C	මණි. ්සියල්ල ම ය.	(3) A සහ	C පමණි.
		3 සහ C පමණි.	_	` ,			ි පිය ි ශ්ශම් දී ත	රම <i>n</i> වන
28.	සංගහ නියැඳි	ාන සමානුපාතය π දියක නියැඳි සමානුෑ	; සහිත සංගහනයකි පාතයෙහි සම්මත දෙ	්න් පු ් ජනය	තිස්ථාපනය (වන්නේ,	සහත සටල සසමභා		
	(1) 1	$\sqrt{\left(\frac{N-n}{N-1}\right)\frac{\pi(1-\pi)}{n}}$		(2)	$\frac{\pi(1-\pi)}{\sqrt{n}}$		$(3) \ \frac{\sqrt{\pi(1-\pi)}}{\sqrt{n}}$	<u> </u>
	(4)	$\sqrt{\left(\frac{N-n}{N}\right)\frac{\pi(1-\pi)}{n}}$		(5)	$\frac{\sqrt{\pi(1-\pi)}}{n}$			
29.	(1) : (2) :	නියැඳි තරම <i>n</i> කුඩා නිමානකයක නියැඳු	කාශය සතා වේ ද? නම්, t – වාහප්තිය ම් වාහප්තියේ සම්මක	පුමත ා අපග	ාමනයට නිමා	නකයෙහ් සමමත ම	පවතී. දා්ෂයයැයි කියනු (ලැබේ.
	(3)	සුචලතාංක සංඛ්යාද නියැළි කරම කඩා අ	ා වැඩි වන විට χ^2 නම් සංගහන සමානු සොදාගත හැකි වන්	– වාහා පාතුල	ප්තිය වඩාත් යහි නියැඳුම්	කුටික වේ. වාහප්තිය නොදන්ප	ාා එකක් වේ.	
30.	පහත (1)	ා දැක්වෙන කුමන ද \hat{A} සහ \hat{A}_{r} යන \hat{A} ද	අකාශය සකා වේ ද්ර රාමිතිය සඳහා අනභි	නත එ	හිමානක දෙක	ක් නම් $\hat{ heta}_2$ වලට සාං	පේක්ෂව $\hat{ heta}_1$ හි කාර්	· රයක්ෂමතාව
		අර්ථ දක්වනු ලබන්	ඉන්, $rac{Var(heta_1)}{Var(\hat{ heta}_2)}$ වශ	යෙනි.				
	(2)	අභිතත නිමානකය	ක් සංගත නිමානකය μ ඥාත නම්, $rac{1}{n}{\sum}($	യ) ² යන සංගත	න විචලතාව σ^2 සඳ	හා අනභිනත නිමා	නකයක් වේ.
	(4)	සංගහන පරාමිතිය	සහ පරාමිතිය සඳහ	ා නිමි	තය අතර වේ	නස නිමිතයේ අභිද	ාතිය ලෙස හැඳින්	ිවේ.
			ක ඕනෑම ශිුතයකට (
31.	සම්භ	හත සමානුපාතය භාවිතාව 0.9544 වෘ 900	π නියැඳි සමානුපා ා ලෙස නිමානය කි (2) 1681	ටමට ₍	මඟින් උපරි අවශාව ඇත.) 1785	ම සම් <mark>තාවී ද</mark> ෝෂය මේ සඳහා අවශා (4) 2401	π±0.02 පරාසය නියැදි තරම කුමක (5) 2500	ා තුළ වීමේ ෝ ද?
32	<i>ක</i> ටා	දෙනුදුදු // සුදුරු මුදුරුදුර	න්නා විචලතාව σ^2 ස	ෘහිත ව	පුමත සංගහප	ායකින් ලබාගත් තර	ම <mark>25</mark> වන සසම්භා	වී නියැඳියක
34	. මගා නිය	ැළි මධානායය $\overline{x}=$	60 සහ නියැඳි වීච	ලතාව	$s^2 = 16$ විශ	s. μ සඳහා ගණනය	කරන ලද ව්ශුම්භ	හ පුාන්තරය
			₎ ම්භ මට්ටම කුමක් ද					
		80%	(2) 90%) 95%	(4) 98%	(5) 99%	
33	. පහ	ත දැක්වෙන කුමන	පුකාශය අසත ෂ වේ	၃? ်				
	(1)	සංගහන පරාමිතිය	ක් සඳහා විශුම්භ පුාත	්තර ෙ	·ගාඩනැගීමට	යොදා ගන්නා විචල	පයෙහි පරාමිතිය අ	sහ පරාමිතිර -
		සඳහා ලක්ෂමය නි 99% විශුම්භ මට්ට	මානකයක් අඩංගු ෙ මක් සහිත විශුම්භ පු	ව්. ාන්තර	íය, 95% විශු <u>ේ</u>	මහ මට්ටමක් සහිත	විශුම්භ පුාන්තරයර	වඩා හො
	(3)	සංගහන මධානය නිමානකය එහි සම්	යන් අතර වෙනස <i>I</i> ම්භාවී දෝෂය සඳහා	ගැලප	මෙන.			$ar{X}_2$ ලක්ෂමා
-	(4)	පුමත සංගහනයක	මධානාසය සඳහා 9	5% වි	ශුම්භ පුාන්ත	ර එකකට වඩා පැව	තිය හැකි ය.	and and

පුමක සංගහනයක 95% විශුම්භ පුාත්තරයට වඩා පළල් වේ.

(5) නොදන්නා විචලතාව සහිත පුමත සංගහනයක මධානාපය සඳහා 95% විශුම්භ පුාත්තරය විචලතාව දන්නා

- 34. කල්පිත පරීක්ෂාව පිළිබඳ පහත දැක්වෙන පුකාශ සලකන්න.
 - A I වන පුරූපයේ දෝෂයෙහි සම්භාවිතාවේ දෙන ලද අගයක් සඳහා අවම සම්භාවිතාවක් සහිත II වන පුරූපයේ දෝෂය සඳහා කල්පිත් පරීක්ෂාවක් ඉතා බලවත් කල්පිත පරීකෂාවක් යැයි කියනු ලැබේ.
 - ${
 m B}$ ${
 m H}_0$ කල්පිතය අසතා වන විට ${
 m H}_1$ කල්පිතය පිළිගැනීමේ සම්භාවිතාවට පරීක්ෂාවේ බලය යැයි කියනු ලැබේ.
 - C පරීක්ෂා සංඛාහතියක නියැඳුම් වනාප්තිය පරීක්ෂාවට භාජනය වෙමින් පවතින සංගහන පරාමිතිය මත රදා පවතී.

ඉහත පුකාශවලින් සතා වන්නේ,

(1) A පමණි.

- (2) A හා B පමණි.
- (3) A හා C පමණි.

(4) B හා C පමණි.

- (5) A, B හා C සියල්ල ම ය.
- 35. සංගහන සමානුපාතය $H_0:\pi=0.1$ කල්පිතය $H_1:\pi\neq0.1$ කල්පිතයට එරෙහිව 5% මට්ටමකින් පරීක්ෂා කිරීම සඳහා තරම 100වන සසම්භාවී නියැඳියක් ලබා ගන්නා ලදී. නියැඳි සමානුපාතය p=0.16 නම් නිගමනය වන්නේ,
 - (1) p-අගය = 0.0228 < 0.05 බැවින් H_0 පුතික්ෂේප කළ යුතු ය.
 - (2) p අගය = 0.0456 < 0.05 බැවින් H_0 පුතික්ෂේප කළ යුතු ය.
 - (3) p අගය = 0.0526 > 0.05 බැවින් H_0 පුතික්ෂේප නොකළ යුතු ය.
 - (4) $p q \omega \omega = 0.2104 > 0.05$ බැවින් H_0 පුතික්ෂේප නොකළ යුතු ය.
 - (5) Z = 1.62 < 1.96 බැවින් H_0 පුතික්ෂේප කළ යුතු ය.
- 36. A විදුලි බුබුළු වර්ගයේ තරම 120ක සසම්භාවී නියැඳියක ආයු කාලයෙහි මධානාය සහ විචලතාව $\overline{x}=945$ සහ $s_1^2=240$ වූ අතර B විදුලි බුබුළු වර්ගයේ තරම 100වන සසම්භාවී නියැඳියක ආයුකාලයෙහි මධානාය සහ විචලතාව $\overline{y}=940$ සහ $s_2^2=200$ විය. සංගහන මධානායයන්ගේ සමානතාව $H_0:\mu_1=\mu_2$ කල්පිතය $H_1:\mu_1>\mu_2$ ට එරෙහිව පරීක්ෂා කිරීම සඳහා අවධි පෙදෙස $\overline{X}-\overline{Y}>4$ මඟින් දෙනු ලැබේ නම් කල්පිත පරීක්ෂාවේ I වන පුරූපයේ දෝෂය වන්නේ,
 - (1) 0.0228 cs.
- (2) 0.0250 cs.
- (3) 0.1103 ය.
- (4) 0.3897 ය.
- (5) 0.4772 **c**.
- 37. පුමත සංගහනයක මධානාසය $H_0: \mu=120$ කල්පිතය $H_1: \mu=122$ කල්පිතයට එරෙහිව තරම 60වන සසම්භාවී නියැඳියක් ලබාගෙන පරීක්ෂා කිරීම සඳහා අවධි පෙදෙස $\overline{X}>121.4$ මඟින් දෙනු ලැබේ. සංගහන විචලතාව $\sigma^2=240$ නම් පරීක්ෂාවේ බලය වන්නේ,
 - (1) 0.1179 a.
- (2) 0.2420 ය.
- (3) 0.3821 cs.
- (4) 0.6179 ය.
- (5) 0.8821 cs.
- 38. කිසියම් ආරෝගාශාලාවක දින 50ක් තුළ දී මියගිය සංඛ්නාව පහත් වගුවේ දැක්වේ.

ම්යගිය සංඛනව	0	1	2	3	4	5	6	7
දින සංඛනව	2	8	12	13	8	4	2	1
අපේක්ෂිත සංඛනතය	3	8	11	11	8	5	3	1

මෙම දත්ත සඳහා අදාළ වාාාප්තිය මධානාසය 3 සහිත පොයිසෝන් වාාප්තියක් දැයි 5% මට්ටමකින් පරීක්ෂා කිරීම සඳහා අවධි අගය වන්නේ,

- (1) 7.82 ය.
- (2) 9.50 cs.
- (3) 11.10 \to.
- (4) 12.60 cs.
- (5) 14.10 ය.
- 39. කිසියම් වී වර්ග තුනක මධානාෂය අස්වැන්න සමානදැයි පරීක්ෂා කිරීම සඳහා එක එකක් තරම 5වන නියැඳි තුනක් සසම්භාවී ලෙස තෝරා ගන්නා ලදී. ගණනය කරන ලද වර්ග එකතු පහත දැක්වෙන පරිදි වේ.

මුළු වර්ග එකතුව

SST = 224

වී වර්ග අතර වර්ග එකතුව SSB = 128

සංගහන මධානාසයන් සමානය යන කල්පිතය 5% මට්ටමකින් පරීක්ෂා කිරීම සඳහා අවධි පෙදෙස වන්නේ,

- (1) $F = 5.34 > 3.49 \, \omega$.
- (2) F = 8 > 3.89 a.
- (3) $F = 8 < 19.4 \omega$.

(4) F = 8 > 3.34 a.

(5) F = 8.67 > 3.81 a.

[කත්තාසි සිවුන නයන්

40.	2010 විය. අ	සිට 2019 දක්වා ක ර්ධ-මධාපයක කුම	ාල ශේණියක ප යන් ලබා ගන්න	ළමු වසර 5 ා උපනති ෙ	හි මධානාය 3 රේඛාව වන්නේ	2.6 වු අතර දෙවන ,	වසර පහේ මධාපනාය 42.6
	(1) j	$Y = 26.6 + t \omega.$		(2)	$\hat{Y} = 26.6 + 2t$	ය .	
		$\hat{Y} = 29.24 + 1.67t$	చి.	(4)	$\hat{Y} = 32.6 + 2t$	ය.	
		$\hat{Y} = 42.6 + t \omega.$					
41.	චල ම	ධායක සම්බන්ධ ෙ	යන් පහත දැක්	ංචන පුක් ාම	සලකන්න.		
		A - චල මධාායක ම	=			n ජනනය විය හැ ^{ද්}	කි ය.
	1	3 - කාලය පදනම් නොවේ.	කරගෙන විච)ලාසයක අශ	ගයයන් පුරෝ	කථනය කිරීමට භි	වල මධාපයක පුයෝජනවක්
	(රේධාවේ තෝ යොදාගත පෙ		ස්වරුපය නො:	ාදන්නේ නම් උප:	නතිය නිමානය කිරීමට චල
	ඉහත	පුකාශවලින් සතා	වන්නේ,				
	. ,	A පමණි.			A හා B පමණි		(3) A හා C පමණි.
	(4) I	3 හා C පමණි.		(5)	A, B ∞ C €	යියල්ල ම ය.	
42		සිට 2014 දක්වා තයන්ගේ වසර 5 හි			ාල ශේණියක	එක් එක් කාර්තුව	සඳහා උපනතිය ඉවත් කළ
		Í		Q_2	Q_3	Q_4	1
			450	$\frac{\zeta_2}{550}$	525	500	
			4				. b D
		කාර්තුව සහ තුන්වෑ					
	(1)	89, 104 ຜ.	(2) 90, 105	వి. (3)	91, 106 ය.	(4) 92, 107 ©	(5) 101, 106 ω.
43	(201)) - 2014 දක්වා කාල 2 සඳහා t = 0) මඟි තුව සඳහා උපනතිය	ත් දැක්වේ. 20 13	3 වර්ෂයේ ෙ	දවෙනි කාර්තුව) සඳහා කාල ශේණි	යන සමීකරණය $\hat{Y}=50+16t$ ගෙහි සතා අගය 72 නම් එම
		103 ය.				(4) 113 c.	(5) 116 డు.
44		ුම නියැඳි ලක්ෂ $\stackrel{-}{X}$ ඉන් පෙන්නුම් කරන		ුන සීමා ත <u>ු</u>	ළ පවතින නමු	ත් එම ලක්ෂ මඟින	් උපනතියක් පෙන්නුම් කරයි
		 කිුයාවලිය පාලනයෙ					
	(2)	සම්භාවනා හේතු ප	වතින බව ය. ~~යි බඩ ය			4//	
		විචලෳකාව වැඩි වී අ පැවරිය හැකි හේතු					
	(5)	සසම්භාවි නියැඳි ම	ත්රීමේ දී දෝෂ	පවතින බව	ය.		2
45		එකක් තරම 100 වප තේ පිළිවෙළින්,	ත නියැදි 10 ක ෙ	ංදා්ෂ අයිතම ·	සංඛපාව 20 න	තම්, np-සටහනේ ප	හළ සහ ඉහළ පාලන සීමාවන්
	(1)	-4.18, 4.22	(2) -2.2, 6	.2 (3)	0,4.22	(4) 0, 6.2	(5) 2, 0.2
1	. 00	8		5) 00 00 00 00 00	en consister		
40), UC	- වකුය සම්බන්ධයෙ ^ _ ඉඹැගැනුම් නි				රක තොග වෙන් <u>න</u>	තර හඳුනාගැනීමේ හැකියාව
		OC - වකුය ම)ඟින් පෙන්නුම්	කරයි.			
***************************************		කිරීමෙන් එය	වැඩි දියුණු කළ	ළ හැකි ය.			හ පිළිගැනුම් සංඛ්යාව වෙනස්
		C - තොගයක ස දැක්වේ.	දොස් භාගය විච	ලනය වීමේ) ද නොගය පුද්	තක්මේප ක්රීමේ ස	ම්භාවිතාව <i>OC</i> - වකුය මඟින්
	ඉහස	ා පුකාගවලින් සතා	ා වන්නේ,				
		A පමණි. B හා C පමණි.		, ,	A හා B පම A,B හා C ේ		(3) A හා C පමණි.
l			····		······		

47.	N = 1000, n = 100 cax	ා පිළිගැනුම් සංඛනාව	c = 1 සහිත	පිළිගැනුම නියැඳුම්) සැලැස්ම	සලකන්න.	AQL = 0.01	සහ
	LTPD = 0.07 නම් පාරි	භෝගික අවදානම සහ	ා නිෂ්පාදක අම	වදානම වන්නේ පි	lළිවෙළින් <u>,</u>			

- (1) 26.42%, 0.73% cs.
- _σ (2) 26.42%, 99.27% ω.
- (3) 36.79%, 0.09% a.
- (4) 63.21%, 0.09% a.
- (5) 73.58%, 0.73% a.

48. කිසියම් ආයතනයක් යම් අයිතමයක අළෙවිය ලබන වසරේ දී 50%කින් වැඩි වේ යයි අපේක්ෂා කරයි. ආයතනයේ අරමුණ දළ ආදායම දෙගුණ කිරීම නම්, විකුණුම් මිල වැඩි කළ යුතු වන්නේ කුමන පුතිශතයකින් ද?

- (1) 30%
- (2) $33\frac{1}{3}\%$
- (3) 50%
- (4) 100%
- (5) 150%

49. දර්ශකාංක සම්බන්ධයෙන් පහත දැක්වෙන පුකාශ සලකන්න.

A - පාමෙගේ දර්ශකාංකය කාලපුතිවර්ත පරීක්ෂාව තෘප්ත කරන නමුත් සාධක පුතිවර්ත පරීක්ෂාව තෘප්ත නොකරයි.

B - මිල ගණන් වැඩිවෙමින් පවතින තත්ත්වයක දී ලැස්පෙයර්ස් මිල දර්ශකය පාෂෙගේ මිල දර්ශකයට වඩා කුඩාවීමේ පුවණනාවක් දක්වයි.

C - සරල සමාහාර මිල දර්ශකය විවිධ භාණ්ඩවල සාපේක්ෂ වැදගත්කම සැලකිල්ලට නොගනී. ඉහත පුකාශවලින් සතා වන්නේ,

(1) A පමණි.

(2) C පමණි.

(3) A හා B පමණි.

(4) A හා C පමණි.

(5) A, B හා C සියල්ල ම ය.

50. A සහ B භාණ්ඩ නිෂ්පාදනය සඳහා අමුදුවා වර්ග දෙකක් (I සහ II) වෙනස් සමානුපාතයන්ගෙන් යොදා ගන්නා නමුත් නිෂ්පාදිත භාණ්ඩ දෙක සඳහා එක එකක් අමුදුවා මිල ගණන් සමාන වේ.

	Á නිෂ්පාදනය	B නිෂ්පාදනය
I අමුදුවා සඳහා බර (w ₁)	60	70
II අමුදුවා සඳහා බර (w ₂)	40	30
නිෂ්පාදන වියදම දර්ශකය	170	165

අමුදුවා I සහ II සඳහා මිල දර්ශක පිළිචෙළින් දැක්වෙන්නේ කුමන වරණයෙහි ද?

- (1) 15,20
- (2) 50,45
- (3) 64.5, 187.5
- (4) 150, 200 (5
- (5) 285, 235

* * *

ශී ලංකා විභාග දෙපාර්තමේන්තුව இலங்கைப் பரீட்சைத் திணைக்களம்

අ.පො.ස. (උ.පෙළ) විභාගය/ க.பொ.த. (உயர் தர)ப் பரீட்சை - 2020 පැරණි නිර්දේශය/ பழைய பாடத்திட்டம்

විෂයය අංකය 31

විෂයය பாடம்

වාහාපාර සංඛ්නානය

ලකුණු දීමේ පට්පාට්ය/புள்ளி வழங்கும் திட்டம் I පතුය/பத்திரம் I

							r		
පුශ්න	පිළිතුරු	පුශ්න	පිළිතුරු	පුශ්ත	පිළිතුරු	පුශ්ත	පිළිතුරු	පුශ්න	පිළිතුරු
අංකය	අංකය	අංකය	අංකය	අංකය	අංකය	අංකය	අංකය	අංකය	අංකය
ഖി னா இல.	ഖി ക ட இல.	வினா இல.	ബിത ட இல.	வினா இல.	ഖി ക െ இல.	வினா இல.	ഖി ൈ ∟ இல.	வினா இல.	ഖി ക െ இல.
01.	3	11.	2	21.	1	31.	5	41.	2
02.	44	12.	5	22.	5	32.	5	42.	<u>I</u>
03.	2	13.	5	23.	1	33.	2	43.	4
04.	3	14.	4	24.	3	34.	5	44.	4
05.	11	15.	3	25.	2	35.	2	45.	4
06.	1	16.	3	26.	2	36.		46.	2
07.	<u> </u>	17.	5	27.	1	37.	4	47.	1
08.	5	18.	4	28.	3	38.	2	48.	2
09.	3	19.	3	29.	2	39.	2	49.	2
10.	5	20.	3	30.	3	40	2	50	4
									L

🗘 විශේෂ උපදෙස්/ விசேட அறிவுறுத்தல் :

එක් පිළිතුරකට/ ஒரு சரியான விடைக்கு ලකුණු 01 බැගින්/புள்ளி வீதம் මුළු ලකුණු/மொத்தப் புள்ளிகள் 1 × 50 = 50

I කොටස

- 1. (අ) පූර්ව පරීක්ෂාව සහ සම්පූර්ණ කරන ලද පුශ්නාවලියක් සංස්කරණය කිරීම අතර වෙනස පැහැදිලි කරන්න, පූර්ව පරීක්ෂාව මඟින් සහ සම්පූර්ණ කරන ලද පුශ්නාවලියක් සංස්කරණය කිරීම මඟින් හඳුනාගත හැකි අඩුපාඩු තුනක් විස්තර කරන්න.
 (ලකුණු 04යි.)
 - (ආ) එක එකක් සඳහා නිදසුනක් දෙමින් පහත දැක්වෙන දැ විස්තර කරන්න.
 - (i) පැතිකඩ සටහන
- (ii) Z වකුය
- (iii) ලොරෙන්ස් වකුය

(ලකුණු 03යි.)

(ඉ) දත්ත වගුගත කිරීමක අරමුණු තුනක් දක්වන්න.

පහත දැක්වෙන දත්ත, වගුවක ස්වරූපයෙන් ඉදිරිපත් කරන්න.

2016 දී කිසියම් කර්මාන්තශාලාවක ස්ථීර සේවකයන් සංඛාාව $3\,500$ ක් වූ අතර ඔවුන්ගෙන් $3\,200$ ක් පිරිමි විය. තාවකාලික සේවකයන් සංඛාාව 800ක් වූ අතර ඔවුන්ගෙන් 300ක් ගැහැණු විය. 2017 දී $4\,000$ ක් මුළු සේවක සංඛාාවෙන් $3\,300$ ක් ස්ථීර සේවකයන් විය. ගැහැණු සේවක සංඛාාව 500ක් වූ අතර ඔවුන්ගෙන් 350ක් තාවකාලික සේවිකාවන් විය.

(ලකුණු 03යි.)

(ඊ) පාසලක 10වන ශ්රීණියෙහි A හා B යන පංති දෙකක ශිෂායන්ගේ ගණිත ලකුණු පහත දැක්වෙන වෘත්ත පතු සටහන් මඟින් නිරූපණය කරනු ලැබේ.

			A cool	තිය					4.5	В	පංති	3		
3	2	3	4	5				4	2	3				
4	1	3	4	4	5	6	7	5	3	4	5	6	8	8
5	0	2	3	4	5	7	8	6	1	4	6	7	8	9
6	2	3	4	5	6		*	7	0	3	3	7	7	8
7	4	5	5			•	Ox	8	0	2	6	7	9	
8	6							9	6	7		→		

එකම පුස්ථාරයේ කොටු කෙඳි සටහන් ගොඩනගා පංති දෙකෙහි ශිෂෳයන්ගේ ගණින විෂයෙහි කාර්ය සාධනය සන්සන්දනය කරන්න. (ලකුණු 06යි.)

(උ) සේවකයන් 70කගේ පැයක ගෙවීම් පහත වගුවේ දැක්වේ.

ගෙවීම්	සේවක සංඛනව
60-69	8
70-79	10
80-89	15
90-99	16
100-109	10
110-129	8
130-189	3

1.

(අ) පූර්ව පරීක්ෂාවක් යනු සමීක්ෂණයේදී යොදා ගැනීමට බලාපොරොත්තු වන පුශ්නාවලියේ අඩුපාඩු හඳුනාගැනීමේ අරමුණින් සංගහනයෙන් තෝරා ගත් කුඩා නියැදියකට පුශ්නාවලිය යොමුකර ලැබෙන තොරතුරු අනුව පුශ්නාවලියේ අඩුපාඩු සකස් කර ගැනීමේ කි්යාවලිය වේ.

සම්පූර්ණ කරන ලද පුශ්නාවලියක් සංස්කරණය කිරීම යනු සම්පූර්ණ කරන ලද පුශ්නාවලිවල ඇති තොරතුරුවල නිරවදාකාවය, පැහැදිලි බව, සංගත බව, පූර්ණ බව සහ සමජාතීය බව සඳහා පරීක්ෂා කිරීම වේ.

පූර්ව පරීක්ෂාවෙන් හඳුනාගත හැකි අඩුපාඩු

- 🔷 ඉවත් කළ යුතු පුශ්ත හඳුතාගැනීම.
- අවශා තොරතුරු පුශ්ත මඟින් ලබා දී නැත්නම් අලුතින් පුශ්න ඇතුළත් කළ යුතුද යන්න.
- 🔷 අපැහැදිලි පුශ්න අඩංගු වී ඇත්ද යන්න.
- ඉස්නවල පෙළ ගැස්වීමේ වැරදි පවතීද යන්න.
- ඉශ්නවල උභයාර්ථ බව පවතීද යන්න.

සංස්කරණය මඟින් හඳුනාගත හැකි අඩුපාඩු

- අපැහැදිලි බව (සපයා ඇති තොරතුරුවල අපැහැදිලිතාවයන් පවතීද යන්න)
- 🔷 සාවදා බව (වැරදි තොරතුරු සපයා තිබේද යන්න)
- 🔷 අසම්පූර්ණ බව (පුතිචාර නොදක්වා තිබේද යන්න)
- 🔷 අසංගත බව (සපයා ඇති තොරතුරුවල වෙනස්කම් තිබේද යන්න)
- 🔷 බලාපොරොත්තු වූ තොරතුරු නොලැබී තිබේද යන්න එනම් බාහිරස්ථයන් අඩංගු වී ඇත්ද යන්න

(ලකුණු 04යි)

(අා) (i) පැතිකඩ සටහන

යම් විචලායකට අදාළව සාමානා තත්ත්වය හෙවත් පොදු තත්ත්වය ඊට අදාළ විශේෂ තත්ත්වයක් සමඟ සැසඳීම සඳහා යොදා ගනු ලබන පුස්ථාරික නිරූපණය පැතිකඩ සටහන වේ.

නිදසුන :

විභාගයකදී එක් එක් විෂය සඳහා ශිෂාායින් ලබාගත් ලකුණුවල සාමානා අගය හා A නම් ශිෂායා ලබා ගත් ලකුණු සැසඳීම.

(ii) **Z** වකුය

යම් විචලෳයකට අදාළව අනුයාත වර්ෂ දෙකක් සඳහා මුල් දත්ත, සමුච්චිත අගය හා චල වාර්ෂික එකතුව තිරුපණය කිරීම සඳහා එකම බන්ඩාංක තලයක් මත අඳිනු ලබන රේඛා සටහන Z සටහන වේ. එක් එක් කාලයන්හි නිෂ්පාදන, විකුණුම් යනාදියෙහි ඇතිවන වෙනස්වීම් පුස්ථාරික නිරූපණය කිරීමට Z සටහන යොදා ගත හැකිය.

නිදසුන :

එක්තරා ආයතනයක 2018 හා 2019 වසරවල මාසික අලෙවියෙහි වෙනස්වීම පෙන්නුම් කිරීම.

(iii) **ලෝරන්ස් වකු**ය

යම් විචලායක් එයට අදාළ තවත් විචලායකට සාපේක්ෂව ඒකාකාර වාාප්තියෙන් කොතරම් දුරට ඇත්වී ඇත්දැයි යන්න පුස්ථාරිකව නිරූපණය කිරීම ලෝරන්ස් වකුය වේ. විෂමතාවයන් පෙන්නුම් කිරීමට මෙන්ම විෂමතාවයන් සැසඳීම සඳහාද ලෝරන්ස් වකුය යොදා ගනී.

නිදසුන :

__ රටක ජනගහනය අතර ආදායම් බේදී යාමේ විෂමතාවය නිරූපණය කිරීම

(ලකුණු 03යි)

(ඉ) දත්ත වගුගත කිරීමක අරමුණ

- 💠 දත්ත විශාල පුමාණයක් කුඩා ඉඩකඩක් තුළ කාර්යක්ෂමව ඉදිරිපත් කළ හැකිවීම.
- 💠 දත්ත පහසුවෙන් අවබෝධ කර ගත හැකි වීම.
- 💠 දත්ත සන්සන්දනය කිරීම පහසු වීම.
- 💠 අවශා දත්ත සෘජුවම ලබාගත හැකි වීම.
- 💠 දත්ත පරිශීලනය කිරීමට අඩු කාලයක් ගත වීම.
- 💠 අවශා විට පේලිවල හා තීරුවල එකතුවද මුළු එකතුවද ලබාගත හැකිවීම.
- 💠 දත්ත පුනරාවර්තව නොයෙදීම.
- 💠 ඒකක හා මිනුම් පරිමාණ පිළිබඳව ගැටළු මතු වීම.

		2016			2017	
	ස්ථිර	තාවකාලික	එකතුව	ස්ථීර	තාවකාලික	එකතුව
ස්තී	300	300	600	150	350	500
පුරුෂ	3200	500	3700	3150	350	3500
එකතුව	3500	800	4300	3300	700	4000

(ලකුණු 03යි)

(ඊ)
$$\theta_1 \longrightarrow \frac{27+1}{2} = 7$$
 වෙනියා $\theta_2 \longrightarrow \frac{27+1}{2} = 14$ වෙන

$$\theta_3 \longrightarrow 3(27+1) = 21$$
 ඉවතියා

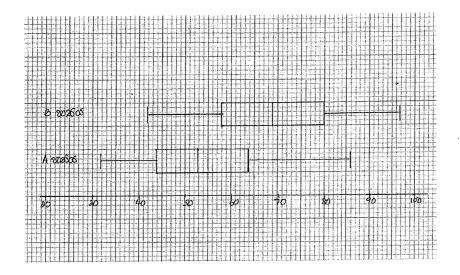
A පන්තිය		<u>B පන්තිය</u>	
 අවම අගය	= 32	අවම අගය	= 42
උපරිම අගය	= 86	උපරිම අ <mark>ගය</mark>	= 97
පළමු චාතුර්තකය	= 44	පළමු චාතුර්තකය	= 58
දෙවන චාතුර්තකය	= 53	දෙවන චාතුර්තකය	= 69
තෙවන චාතුර්තකය	s = 64	තෙවන චාතුර්තකය	= 80

කොටු කෙඳි සටහන (පුස්ථාර කොළය)

ගණිත විෂය සඳහා A පන්තියෙහි ශිෂාායින්ගේ ලකුණු ධන කුටික ස්වරූපය පෙන්නුම් කරන අතර B පන්තියෙහි ශිෂාායින්ගේ ලකුණු සමමිතිකව වාාාප්ත වී ඇත. A පන්තියෙහි ශිෂාායින්ට වඩා B පන්තියෙහි ශිෂාායින් ගණිතය විෂය සඳහා ඉහළ ලකුණු මට්ටමක් ලබා ගෙන ඇත.

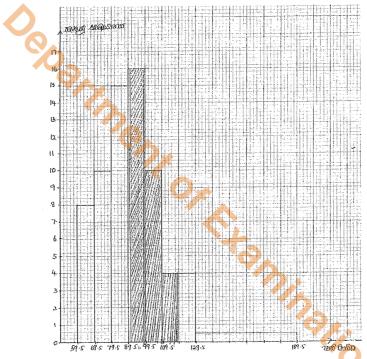
පහළ ඇතුළත මායිම $= Q_1 - 1.5 \, \mathrm{IQR}$ ඉහළ ඇතුළත මායිම $= Q_3 + 1.5 \, \mathrm{IQR}$ පහළ පිටත මායිම $= Q_1 - 3 \, \mathrm{IQR}$ ඉහළ පිටත මායිම $= Q_3 + \mathrm{IQR}$

 $IQR = Q_3 - Q_1$


කාර්ය සාධන මිනුම්

මිනුම	A පන්තිය	B පන්තිය
මධාස්ථය	53	69
$CV = \frac{IQR}{M_d} \times 100$	38%	32%
$CV = \frac{R}{M_d} \times 100$	101%	80%
කුටිකතාවය	ධන කුටික	සමමිතික

ගණිත විෂය සඳහා A පන්තියෙහි ශිෂායින්ගේ ලකුණු ධන කුටික ස්වරූපය පෙන්නුම් කරයි. $(Q_3$ - Q_2 > Q_2 - Q_1 සහ R.W > L.W බැවින්) B පන්තියෙහි ශිෂායින්ගේ ලකුණු සමමිතිකව වාහප්ත වී ඇත. $(Q_3$ - Q_2 = Q_2 - Q_1 සහ R.W = L.W බැවින්)


A පන්තියෙහි ශිෂායින්ට වඩා B පන්තියෙහි ශිෂායින් ගණිතය විෂය සඳහා ඉහළ ලකුණු මට්ටමක් ලබා ගෙන ඇත. A පන්තියේ ශිෂායින්ගේ මධාස්ථ ලකුණට වඩා B පන්තියේ ශිෂායින්ගේ මධාස්ථ ලකුණ ඉහළ අගයක් ගනී. (69 > 53)

 ${
m B}$ පන්තියේ වීචලන සංගුණකය ${
m A}$ පන්තියේ වීචලන සංගුණකයට වඩා අඩුය. (32 < 38)

(ලකුණු 06යි)

(උ)

- 🔷 ජාල රේඛය (පුස්ථාර කොළය)
- 🔷 අක්ෂ නම් කිරීම
- 🔷 ජාල රේඛය නිර්මාණය
- 🔷 අදාළ පුදේශය පාට කිරීම

පන්ති පුාන්තර	සංඛ්නාතය	සැකසූ සංඛ්යාතය
60 - 69	8	. 8
70 - 79	10	10
80 - 89	15	15
90 - 99	16	16
100 - 109	10	10
110 - 129	8	4
130 - 189	3	0.5
		· · · · · · · · · · · · · · · · · · ·

- 2. (අ) හොඳ සාමානෳයක ගුණාංග මොනවා ද? මධාෘතාය, මධාෘස්ථය සහ මාතයට අදාළව මෙම (ලකුණු 04යි.) ගුණාංග විස්තර කරන්න.
 - (අා) දක්ත කුලකයක ගුණෝත්තර මධානාය අර්ථ දක්වන්න. කිසියම් ආයතනයක අලෙවිය වසර 10ක කාල පරිච්ඡේදයක දී දෙගුණ වේ නම්, වසරකට සාමානා (ලකුණු 05යි.) පුතිශත වර්ධන වේගය කොපමණ ද?
 - (ඉ) ජාතික විභාගයක දී කිසියම් විෂයයක් සඳහා ලබාගත් ලකුණුවල මධානාගය 50 වූ අතර සම්මත අපගමනය 10 විය. ඊළඟ වසරේ දී එම විෂය සඳහාම මධානාපය 60 වූ අතර සම්මත අපගමනය 15ට වැඩි විය. යෝගා මිනුමක් ගණනය කර, වසර දෙකෙහි ශිෂායන්ගේ කාර්යසාධනය සන්සන්දනය (ලකුණු 03යි.) කරන්න.
 - (ඊ) ශිෂායන් 100දෙනෙකු විභාගයක දී ලබාගත් ලකුණු පහත සංඛ්‍යාත ව්‍යාප්තියෙන් දැක්වේ.

ලකුණු	ශිෂප සංඛපාව
0-9	6
10-19	8
20-29	10
30-39	12
40-49	20
50-59	25
60-69	10
70-79	9

පියර්සන්ගේ පළමු කුටිකතා සංගුණකය සහ දෙවන කුටිකතා සංගුණකය ගණනය කරන්න. ඔබගේ පුතිඵල ඇසුරෙන් වාාංප්තියේ ස්වරූපය පිළිබඳ අදහස් දක්වන්න. (ලකුණු 08යි.)

2.

(අ) හොඳ සාමානායක ගුණාංග

- පැහැදිලි ලෙස අර්ථ දක්වා තිබීම.
- 🔷 ගණනය කිරීම සඳහා සියළු දත්ත පදනම් කර තිබීම.
- 🔷 අනනා මිනුමක් වීම.
- Iminations. 🔷 වීජිය රාශියක් ලෙස තවදුරටත් පරිහරණය කළ හැකිවීම.
- 🔷 අන්තා අගයන්ගේ බලපෑමෙන් තොරවීම.
- 🔷 හොඳ නිරූපා අගයක් වීම.
- නියැදි උච්චාවචනය අඩුවීම.
- 🔷 විශ්වාසනීයත්වයෙන් යුක්ත විය යුතු වීම.

(ලකුණු 04යි)

මධානාය ගණිතමය වශයෙන් පැහැදිලිව අර්ථ දක්වා ඇති අතර සියලු දත්ත මත පදනම් වන මිනුමකි. එය අනනා මිනුමක් වන අතර වීජිය රාශියක් ලෙස වැඩිදුර ගණනය කිරීම් සඳහා යොදා ගත හැකිය. එහෙත් මධානාය අන්තා අගයන්ගේ දැඩි බලපෑමට ලක්වන මිනුමක් වන අතර විවෘත පංති පාත්තර සහිත සංඛාාන වාසාප්තීන් සඳහා ගණනය කළ නොහැකිය. අධික ලෙස කුටික වාසාප්තීන්හිදී මධානාය අර්ථවත් මිනුමක් නොවේ.

මධාස්ථය අනතාා මිනුමක් වන අතර අන්තා අගයන්ගේ බලපෑමට ලක් නොවන මිනුමකි. විවෘත පංති පුාන්තර සහිත සංඛාහන වහාප්තීන්හිදී වුවද ගණනය කළ හැකි අතර කුටික වහාප්තිවලදී වැදගත් මිනුමක් ලෙස යොදා ගත හැකිය.

එහෙත් මධාෘස්ථය ගණිතමය වශයෙන් පැහැදිලිව අර්ථ දක්වා නොමැති අතර සියලු දත්ත මත පදනම් නොවන මිනුමකි. වීජිය රාශියක් ලෙස වැඩිදුර ගණනය කිරීම් සඳහා යොදා ගත නොහැකිය.

මාතය අන්තා අගයන්ගේ බලපෑමට ලක් නොවන මිනුමකි. විවෘත පංති පුාන්තර සහිත සංඛානත වාහප්තීන්හිදී වුවද ගණනය කළ හැකි අතර ගුණාත්මක දත්ත සඳහා යොදාගත හැකි මිනුමකි. කුටික වාහප්තිවලදී වැදගත් මිනුමකි.

මාතය අනනා නොවන මිනුමක් වන අතර ගණිතමය වශයෙන් පැහැදිලිව අර්ථ දක්වා නොමැති මිනුමකි. වීජිය රාශියක් ලෙස වැඩිදුර ගණනය කිරීම් සඳහා යොදාගත නොහැකිය.

(ලකුණු 04යි)

(ආ) ධන නිරීක්ෂණ N සංඛාාවක ගුණෝත්තර මධානාසය යනු එම සංඛාාවල ගුණිතයෙහි N වන මූලයයි. $X_1, X_2, X_3, \ldots, X_N$ වන ධන නිරීක්ෂණ N හි ගුණෝත්තර මධානාසය $G = \sqrt[4]{X_1} \times X_2 \times X_3 \times \ldots \times X_N$ මඟින් ලබාදෙයි. පුතිශත අනුපාත සහ සමානුපාතවල මධානාසයන් ගණනය කිරීම සඳහා ගුණෝත්තර මධානාස යොදා ගනියි.

$$a (1+r)^{1/9} = 2a$$

$$(1+r)^{1/9} = 2$$

$$1+r = \sqrt[9]{2}$$

$$1+r = 1.08$$

$$r = 0.08$$

වෙනත් කුමයක්

$$100 (1 + r/100)^{9} = 200$$

$$(1+r/100)^{9} = 2$$

$$lg(1+r/100)^{9} = lg2$$

$$9 lg(1+r/100) = 0.3010$$

$$\lg(1 + r/100) = \frac{0.3010}{9}$$

$$\lg(1 + r/100) = 0.0334$$

$$1 + r/100 = \text{antilog } 0.0334$$

$$1 + r/100 = 1.08$$

$$r/100 = 0.08$$

$$\underline{r} = 8$$

වසරකට සාමානා $^\circ$ පුතිශත වර්ධන වේගය = 8%

(ලකුණු 05යි)

මධානාය = 5

සම්මත අපගමනය = 10

විචලන සංගුණකය

$$CV = \underline{\underline{S}} \times 100\%$$

$$=\frac{10}{50}$$
 x 100%

දෙවන වර්ෂය

මධානාය = 60

සම්මත අපගමනය = 15

වීචලන සංගුණකය

$$CV = \underline{\underline{S}} x 100\%$$

$$=\frac{15}{60} \times 100\%$$

CV = 20%

පළමු වසරෙහි කාර්ය සාධනය දෙවන වසරට වඩා ඉහළ මට්ටමක පවතී.

(ලකුණු 03යි)

(ඊ) ලකුණු	.ශිෂා සංඛපාව (f)	මධා අගය (x)	u	u^2	fu	fu^{2}	f_{c}
0 - 9	. 6	4.5	-3	9	-18	54	6
10 - 19	8	14.5	-2	4	-16	32	14
20 - 29	10	24.5	-1	1	-10	10	24
30 - 39	12	34.5	0	0	0	0	36
40 - 49	20	44.5	1	1	20	20	56
50 - 59	25	54.5	2	4	50	100	81
60 - 69	10	64.5	3	9	30	90	91
70 - 79	9	74.5	4	16	_36_	144	100
	100				92	450	

මාතය

$$M_{\circ} = L_{1} + \left(\frac{\Delta_{1}}{\Delta_{1} + \Delta_{2}}\right) C$$

$$= 49.5 + \left(\frac{5}{5 + 15}\right) 10$$

$$= 49.5 + \frac{5}{20} \times 10$$

$$= 49.5 + 2.5$$

$$= 52$$

 $L_{_1}$ = මාත පන්තියේ පහළ මායිම

 $\Delta_{_{
m I}}$ = මාත පත්තිය සහ ඊට පෙර පත්තියේ සංඛ්‍යාත අතර වෙනස

 $\Delta_{\!\scriptscriptstyle 2}$ = මාත පන්තිය සහ ඊට පසු පන්තියේ සංඛ්‍යාත අතර වෙනස

C = මාත පන්තියේ පළල

මධානනාය

$$\overline{X} = A + \left(\frac{\Sigma fu}{\Sigma f}\right) C$$

$$= 34.5 + \frac{92}{100} \times 10$$

$$= 34.5 + 9.2$$

$$= 43.7$$

A = උපකල්පිත මධානාය

$$u = X - A$$

 Σf = මුළු සංඛානය

C = පන්ති පුාන්තරවල පළල

පියර්සර්න්ගේ පළමු කුටිකතා සංගුණකය

$$SK_{1} = \left(\frac{\overline{X} - M_{\circ}}{S}\right)$$

$$= \frac{43.7 - 52}{19.11}$$

$$= \frac{-8.3}{19.11}$$

$$= -0.43$$

මෙය සෘණ කුටික වහාප්තියකි

මධාස්ථය

$$M_{a} = L_{1} + \left(\frac{\frac{n}{2} - f_{c}}{-f_{m}}\right) C$$

$$= 39.5 + \left(\frac{50/2 - 36}{20}\right) 10$$

$$= 39.5 + \frac{14}{20} \times 10$$

$$= 39.5 + 7$$

$$= 46.5$$

 $\mathrm{L_{_{1}}}$ = මධාසේථ පන්තියේ පහළ මායිම

n = මුළු සංඛාහනය

 \mathbf{f}_{s} = මධාසේථ පන්තිය දක්වා සමුච්චිත සංඛාාතය

 $\mathbf{f}_{_{\mathrm{m}}}$ = මධාාස්ථ පන්තියේ සංඛාාතය

C = මධාස්ථ පන්තියේ පළල

සම්මත අපගමනය

$$S^{2} = C^{2} \left[\frac{\Sigma fu^{2}}{\Sigma f} - \left(\frac{\Sigma fu}{\Sigma f} \right)^{2} \right]$$

$$= 10^{2} \left[\frac{450}{100} - \left(\frac{92}{100} \right)^{2} \right]$$

$$= 100 (4.5 - 0.8464)$$

$$= 100 \times 3.6536$$

$$= 365.36$$

$$= 365.36$$

$$= 19.11$$

පියර්සර්න්ගේ දෙවන කුටිකතා සංගුණකය

$$SK_{2} = 3\left(\frac{\overline{X} - M_{o}}{S}\right)$$

$$= 3\left(\frac{43.7 - 46.5}{19.11}\right)$$

$$= \frac{-8.4}{19.11}$$

$$= -0.44$$

මෙය සෘණ කුටික වනප්තියකි

විකල්ප සමීකරණ භාවිතා කර තිබුණද පිළිතුරු නිවැරදි නම් ලකුණු ලබා දෙන්න.

(ලකුණු 08යි)

- 3. (අ) (i) "ලැෂ්පියර්ගේ මිල දර්ශකය මඟින් මිල වෙනස් වීම් අධිතක්සේරු වීමට නැඹුරුවක් ඇති අතර පාෂෙගේ මිල දර්ශකය මඟින් මිල වෙනස් වීම් අවතක්සේරු වීමට නැඹුරුවක් ඇතැයි සමහරවිට පුකාශ කරනු ලැබේ." හේතු දක්වමින් මෙම පුකාශය පැහැදිලි කරන්න. (ලකුණු 02යි.)
 - (ii) කාල පුතිවර්තන පරීක්ෂාව සහ සාධක පුතිවර්තන පරීක්ෂාව යනුවෙන් අදහස් කරන්නේ කුමක්දැයි පැහැදිලි කරන්න. මාර්ෂල්-එජ්වර්ත් මීල දර්ශකය කාල පුතිවර්තන පරීක්ෂාව ත්පේත කරනු ලබන බව පෙන්වන්න.
 - (iii) 2016 සහ 2018 වර්ෂ සඳහා A , B , C සහ D භාණ්ඩවල මිල හා පුමාණ පහත වගුවේ දැක්වේ.

	20	16	20	18
භාණ්ඩ වර්ගය	ම්ල	පුමා ණය	මිල	8 පුමාණය 6 5 15
Α	10	8	20	6
В	25	10	30	5
C	20	15	25	15
D	10	20	- 10	25

2016 වර්ෂය පාද වර්ෂය ලෙස ගෙන 2018 වර්ෂය සඳහා මාර්ෂල්-ඒජ්වර්ත් සහ ෆිෂර් පූර්ණ මිල දර්ශක ගණනය කර ෆිෂර් පූර්ණ මිල දර්ශකය සඳහා මාර්ෂල්-ඒජ්වර්ත් මිල දර්ශකය හොඳ සන්නිකර්ෂණයක් බව සතාාප<mark>නය</mark> කරන්න. මේ සඳහා හේතු ඔබගේ වචනයෙන් පැහැදිලි කරන්න.(ලකුණු 05යි.)

- (අං) (i) කාල ශේණියක උපනතිය යනුවෙන් අදහස් කරන්නේ කුමක්දැයි පැහැදිලි කරන්න. උපනතිය නිමානය කිරීමේ අර්ධ-මධායක කුමය සහ චල මධායක කුමය විස්තර කරන්න. (ලකුණු 03යි.)
 - (ii) 2015, 2016, 2017 වර්ෂ සඳහා කිසියම් අයිතමයක කාර්තුමය විකුණුම් අගයන් (රුපියල් දහස්වලිනි) පහත වගුවේ දැක්වේ. වරහන් තුළ දැක්වෙන්නේ උපනති අගයයන් වේ.

වසර		ු ු කාර්	්තු ව	
	Q_1	Q_2	Q_3	Q_4
2015	6(12)	15(15)	15(15)	20(18)
2016	15(18)	20(20)	25(20)	30(25)
2017	25(25)	30(25)	27(30)	25(35)

උපනතියට අනුපාත කුමය මඟින් ආර්ථව දර්ශක නිමානය කරන්න. 2018 පළමු කාර්තුව සඳහා සතා විකුණුම් රු. $100\,000$ නම්, හතරවෙනි කාර්තුව සඳහා අපේක්ෂිත විකුණුම් කොපමණ ද? (ලකුණු 07යි.)

(අ) (i) ලැස්පියර් මිල දර්ශකයේදී පාද වර්ෂ පුමාණයන් බර වශයෙන් යොදා ගනියි. පවතින උද්ධමන තත්ත්වයන් තුළ පාද වර්ෂයට වඩා වර්තන වර්ෂයෙහි මිල වැඩිවේ. ඉල්ලුම් නාහයට අනුව මිල වැඩිවීමේදී පුමාණය අඩු විය යුතුය. නමුත් පාද වර්ෂයේ පුමාණයම වර්තන වර්ෂයේදී ද පාරිභෝජනය කරනු ලබන බව සළකන බැවින්, ලවයෙහි අගය, තිබිය යුතු පුමාණයට වඩා වැඩි වන බැවින් ලැස්පියර් මිල දර්ශකය මිල වෙනස් වීම අධිතක්සේරු වීමකට වැඩි නැඹුරුවක් දක්වයි.

පාෂේ මිල දර්ශකයේදී වර්තන වර්ෂ පුමාණයන් බර වශයෙන් යොදා ගනියි. වර්තන වර්ෂයට වඩා පාද වර්ෂයේ මිල ගණන් අඩුය. එබැවින් ඉල්ලුම් නාහයට අනුව වර්තන වර්ෂයේ පුමාණයන්ට වඩා වැඩි පුමාණයක් පාද වර්ෂයේදී පාරිභෝජනය කළ හැකිව තිබිණි. එහෙත් පාද වර්ෂයේදී ද වර්තන වර්ෂයේ පුමාණයම පාරිභෝජනය කරනු ලබන බව සළකනු ලබන බැවින්, හරයෙහි අගය, තිබිය යුතු පුමාණයට වඩා අඩු බැවින් පාෂේ මිල දර්ශකය මඟින් මිල වෙනස්වීම අවතක්සේරු කිරීමේ නැඹුරුවක් ඇත.

(ලකුණු 02යි)

(ii) කාල ප්‍රතිවර්ත පරීක්ෂාව පාද වර්ෂය සහ වර්තන වර්ෂයන් හුවමාරු කළ හැකි නම් අනුරූප දර්ශකයන් එකිනෙකහි පරස්පරය බව කාල ප්‍රතිවර්ත පරීක්ෂාව වේ. එම දර්ශකාංකවල ගුණිතය වේ.

$$\begin{split} FP_{\text{n/o}} \ x \ FP_{\text{o/n}} &= \sqrt{LP_{\text{n/o}} \ x \ PP_{\text{n/o}}} \quad x \quad \sqrt{LP_{\text{o/n}} \ x \ PP_{\text{o/n}}} \\ &= \sqrt{\frac{\Sigma P_{\text{n}} q_{\text{o}}}{\Sigma P_{\text{o}} q_{\text{o}}}} \ \frac{x \ \Sigma P_{\text{n}} q_{\text{n}}}{\Sigma P_{\text{o}} q_{\text{n}}} \quad \frac{x \ \Sigma P_{\text{o}} q_{\text{n}}}{\Sigma P_{\text{n}} q_{\text{n}}} \quad \frac{\Sigma p_{\text{o}} q_{\text{o}}}{\Sigma P_{\text{n}} q_{\text{o}}} \\ &= 1 \end{split}$$

∴ ෆිෂර් මිල දර්ශකය කාල පුතිවර්ත පරීක්ෂාව තෘප්ත කරයි.

$$LP_{n/o} = PP_{n/o}$$

$$\frac{\sum P_{n}q_{o}}{\sum P_{o}q_{o}} = \frac{\sum P_{n}q_{n}}{\sum P_{o}q_{n}}$$

$$\sum P_{n}q_{o} \times \sum P_{o}q_{n} = \sum P_{n}q_{n} \times \sum P_{o}q_{o}$$

$$LP_{n/o} \times LQ_{n/o} = \frac{\sum P_{n}q_{o}}{\sum P_{o}q_{o}} \times \frac{\sum P_{o}q_{n}}{\sum P_{o}q_{o}}$$

$$= \frac{\sum P_{n}q_{n} \times \sum P_{o}q_{o}}{\sum P_{o}q_{o} \times \sum P_{o}q_{o}}$$

$$= \frac{\sum P_{n}q_{n}}{\sum P_{o}q_{o}}$$

$$LP_{n/o} \times LQ_{n/o} = V_{n/o}$$

(ලකුණු 02යි)

$$FP_{n/o} = \sqrt{LP_{n/o} \times PP_{n/o}}$$

$$= \sqrt{\frac{\Sigma P_n q_o}{\Sigma P_o q_o}} \times \frac{\Sigma P_n q_n}{\Sigma P_o q_n}$$

$$= \sqrt{\frac{1600}{1360} \times \frac{2070}{1744}}$$

$$= \underline{139.6}$$

$$\begin{split} FP_{n/o} \ x \ FQ_{n/o} &= \sqrt{LP_{n/o} \ x \ PP_{n/o}} \quad x \quad \sqrt{LQ_{n/o} \ x \ PQ_{n/o}} \\ &= \sqrt{\frac{\Sigma P_n q_o}{\Sigma P_o q_o}} \quad \frac{x}{\Sigma P_n q_n} \quad x \quad \frac{\Sigma P_o q_n}{\Sigma P_o q_o} \quad \frac{x}{\Sigma P_n q_o} \\ &= \sqrt{\frac{1600}{1360}} \quad \frac{x}{1744} \quad x \quad \frac{1744}{1360} \quad x \quad \frac{2070}{1600} \\ &= \sqrt{\frac{2070 \ x \ 2070}{1360}} \\ &= \frac{2070}{1360} \\ &= \frac{2070}{1360} \\ &= \frac{2070}{1360} \\ &= \frac{2070}{1360} \\ &= V_{n/o} \end{split}$$

∴ ෆිෂර් දර්ශකයට පූර්ණ දර්ශකයක් මේ.

(ලකුණු 05යි)

(අා) (i) **උපනති**ය

කාල ශ්‍රෙණියක් දිගු කාලීනව ගමන් කරන දිශාව කාල ශ්ුණියක උපනතිය ලෙස හැඳින්වේ. ඕනෑම කාල ශ්රෙණියකට වැඩිවීමේ, අඩුවීමේ හෝ ස්ථාවර උපනතියක් පවතී.

අර්ධ මධානයක කුමය

අර්ධ මධාායක කුමය යනු කාල ශ්‍රේණියක් සමාන අර්ධ දෙකකට වෙන් කර එක් එක් අර්ධයෙහි මධාායනා වෙන වෙනම ගණනය කර එම අර්ධ මධාායක දෙක හරහා ගමන් කරන පරිදි උපනති රේඛාව නිර්මාණය කිරීම වේ.

චල මධාායක කුමය

චල මධාන කුමය යනු කාල ශේුණියක පවතින දෝලන රටාව සැලකිල්ලට ගෙන සුදුසු මාතුයක් තෝරා ගෙන ඒ අනුව සමාන අනුයාත කාල පුාන්තර සංඛාාවක මධානාය ගණනය කිරීම මඟින් උපනතිය ලබා ගැනීම වේ. $y_1, y_2, y_3, \ldots, y_n$ කාල ශේුණියෙහි මාතුය K වන චල මධායක වනුයේ $\frac{y_1 + y_2 + y_3 + \ldots + y_K}{K}$, $\frac{y_2 + y_3 + y_4 + \ldots + y_{K+1}}{V}$, $\frac{y_3 + y_4 + y_5 + \ldots + y_{K+2}}{V}$ යනාදි ලෙස ලැබෙන අගයන් වේ.

(ලකුණු 03යි)

(ii)

Y/T = SCI අගයන් කාර්තුව

		N		
වසර	Q_1	Q_2	Q_3	Q_4
2015	$\frac{6}{12}$ x 100 = 50	$\frac{15}{15} \times 100 = 100$	$\frac{15}{15} \times 100 = 100$	$\frac{20 \times 100 = 111.1}{18}$
2016	$\frac{15}{18} \times 100 = 83.3$	$\frac{20}{20} \times 100 = 100$	$\frac{25}{20} \times 100 = 125$	$\frac{30}{25}$ x 100 = 120
2017	$\frac{25}{25}$ x 100 = 100	$\frac{30}{25}$ x 100 = 120	$\frac{27}{30} \times 100 = 90$	$\frac{25 \times 100}{35} \times 100 = 71.4$
එකතුව	233.3	320	315	302.5
සාමානා අගය	77.7	106.7	105	100.8 = 390.2
සැකසූ අගය	$= \frac{77.7}{390.2} \times 400$	$= \frac{106.7}{390.2} \times 400$	$= \frac{105}{390.2} \times 400$	$= \frac{100.8}{390.2} \times 400$
කාර්තුමය අගය	= 79.7	= 109.4	= 107.6	= 103.3

හතරවන කාර්තුවෙහි අපේක්ෂිත විකුණුම් පුමාණය =
$$\frac{100000}{79.7}$$
 x 103.3 = σ_{7} . $129,611.00$

(ලකුණු 07යි)

4. (අ) කාර්යාල ලිපිකරුවෙක් සසම්භාවි ලෙස තෝරාගත් දින 8ක දී ඔහු පෙරවරු 6න් මිනිත්තු X සංඛාාවකින් පසුව නිවසින් පිටත් වන විට කාර්යාලයට ගමන් කිරීමට ගතවන චේලාව මිනිත්තු Y වලින් සටහන් කර ගන්නා ලදී. පුතිඵල පහත ලෙස දැක්වේ.

X	0	5	10	15	20	25	30	35
Y	20	25	39	35	40	45	46	50

$$\sum X = 140 \quad \sum Y = 300 \quad \sum X^2 = 3500 \quad \sum Y^2 = 12012 \quad \sum XY = 6095$$

- (i) අඩුතම වර්ග කුමය භාවිතයෙන්, X මත Y හි පුතිපායන රේඛාව අනුසීහුමය කර පුතීපායන සංගුණකයේ අර්ථය පැහැදිලි කරන්න.
- (ii) නිර්ණන සංගුණකය ගණනය කර අනුසීහුමේ හොඳකම සම්බන්ධයෙන් ඔබගේ අදහස් දක්වන්න. (ලකුණු 05යි.)
- (ආ) සංගීත තරඟයක දී තරඟකරුවන් දසදෙනෙකු, විනිශ්චයකරුවන් දෙදෙනෙකු විසින් පහත දැක්වෙන පිළිවෙළට තරා කරන ලදී.

A විනිශ්වයකරු	4 8	7	6	5	9	10	3	2	1	
B චීනිශ්චයකරු	6 7	8	1	5	10	9	2	3	4	

ස්පියර්මන්ගේ තරා සහසම්බන්ධතා සංගුණකය සහ තරා අතර කාල් පියර්සන්ගේ ගුණිත සූර්ණ සහසම්බන්ධතා සංගුණකය ගණනය කර පිළිතුරු දෙකම සමාන බව සතාාාපනය කරන්න. විනිශ්චයකරුවන් දෙදෙනා විනිශ්චයේ දී එකඟතාවක් දක්වන්නේදැයි පැහැදිලි කරන්න. (ලකුණු 05යි.)

- (ඉ) නිෂ්පාදකයෙකුට අමතර කොටස් විශාල තොග වශයෙන් ලැබෙන අතර පිළිගැනුම් නියැඳුම් සැලැස්මක් භාවිත කිරීමට තීරණය කර ඇත. පහත දැක්වෙන පිළිගැනුම් නියැඳුම් සැලසුම් සැලකිල්ලට ගනු ලැබේ.
 - I සැලැස්ම තරම 50වන සසම්භාවි නියැඳියක් පරීක්ෂා කර පිළිගැනුම් සංඛ්‍යාව c ≤ 1 නම් තොගය පිළිගැනීම.
 - II සැලැස්ම කරම 100වන සසම්භාවී නියැඳියක් පරීක්ෂා කර පිළිගැනුම් සංඛ්‍යාව c ≤ 2 නම් තොගය පිළිගැනීම.
 - (i) එක් එක් සැලැස්ම සඳහා සදොස් පුතිශතය 1%, 2%, 5%, 7% දී තොග පිළිගැනීමේ සම්භාවිතාවන් ගණනය කරන්න.
 - (ii) එක් එක් සැලැස්ම සඳහා (i) හි ලබාගත් අගයන් එකම පුස්ථාරයක අඳින්න.
 - (iii) 2% දෝෂ පුතිශතයේ දී 95%ක පිළිගැනීමක් ද 7% දෝෂ පුතිශතයේ දී 5%ක පිළිගැනීමක් ද සහිතව නියැඳුම් සැලැස්මක් අවශා නම්, මෙම අවශාතාවලට ආසන්න වන්නේ කුමන සැලැස්ම ද?
- (ඊ) එක එකක් තරම 100වන නියැදි 10ක දෝෂ සංඛාහව පහත දැක්වෙන පරිදි වේ.

නියැදි අංකය	1	2	3	4	5	6	7	8	9	10
දෝෂ සංඛනාව	8	4	12	3	12	8	8	15	12	8

np - සටහනක් ගොඩනැගීමට අවශා පාලන සීමාවන් සොයා කියාවලිය පාලනයේ පවතීදැයි පැහැදිලි කරන්න. (ලකුණු 03යි.) 4.

(a) (I)
$$n=8$$
, $\sum x = 140$, $\sum y = 300$, $\sum x^2 = 3500$, $\sum y^2 = 12012$, $\sum xy = 6095$

්
$$\hat{b} = \frac{n \sum xy - \sum x \sum y}{n \sum x^2 - (\sum x)^2}$$
 $\hat{a} = y - b x$ $= \frac{300}{8} - 0.8 \times \frac{140}{8}$ $= \frac{8 \times 6095 - 140 \times 300}{8 \times 3500 - 140^2}$ $= \frac{48760 - 42000}{28000 - 19600}$ $= \frac{6760}{8400}$ $\hat{b} = \frac{6760}{8400}$ $\hat{b} = \frac{0.8}{8}$ $\hat{b} = \frac{300}{8} - 0.8 \times \frac{140}{8}$ $\hat{b} = \frac{300}{8} - 0.8 \times \frac{140}{8}$ $\hat{b} = \frac{37.5 - 14}{23.5}$ $\hat{b} = \frac{37.5 - 14}{23.5}$ $\hat{b} = \frac{6760}{8400}$ $\hat{b} = \frac{6760$

නිවසින් පෙ.ව. 6න් පසුව පිටත් වීමට ගතවන කාලය මිනිත්තුවක් පසුවන විට කාර්යාලයට ගමන් කිරීමට ගතවන කාලය මිනිත්තු 0.8කින් වැඩිවේ.

$$R^{2} = \hat{b}^{2} \left(\frac{\sum x^{2} - n\bar{x}^{2}}{\sum y^{2} - n\bar{y}^{2}} \right) \qquad r = \frac{n \sum xy - \sum x \sum y}{\sqrt{[n \sum x^{2} - (\sum x)^{2}] [n \sum y^{2} - (\sum y)^{2}]}}$$

$$= 0.8^{2} \left(\frac{3500 - 8x17.5^{2}}{12012 - 8x37.5^{2}} \right) \qquad = \frac{8 \times 6095 - 140 \times 300}{\sqrt{(8 \times 3500 - 140^{2})(8 \times 12012 - 300^{2})}}$$

$$= 0.64 \left(\frac{3500 - 2450}{12012 - 11250} \right) \qquad = \frac{48760 - 140 \times 300}{\sqrt{(28000 - 19600)(96096 - 90000)}}$$

$$= 0.64 \times \frac{1050}{762} \qquad = \frac{6760}{\sqrt{8400 \times 6090}}$$

$$= \frac{6760}{7156}$$

$$R^{2} = 0.88$$

$$r = 0.945$$

$$R^{2} = (0.945)^{2}$$

$$R = 0.89$$

(විකල්ප සූතු යොදාගෙන තිබුණද පිළිතුරු නිවැරදි නම් සම්පූර්ණ ලකුණ දෙන්න.)

මුළු විචලනයෙන් 88%ක් පුතිපායනය මඟින් පෙන්වන බැවින් අනුසීහනය කරන ලද පුතිපායන රේඛාව යෝගා වේ.

(ලකුණු 05යි)

(ආ)	A විනිසුරු	B විනිසුරු	d	d^2	X	У	xy	χ^2	y^2
	4	6	-2	4	4	6	24	16	36
	8	7	1	1	8	7	56	64	49
	7	8	-1	1	7	8	56	49	64
	6	1	5	25	6	~ 1	6	36	1
	5	5	0	0	5	5	25	25	25
	9	10	-1	1	9	10	90	81	100
	10	9	1	1	10	9	90	100	81
	3	2	1	1	3	2	6	, 9	4
	2	3	-1	1	2	3	6	4	9
	1	4	-3	9	1	4	4	1	16
				44	55	55	363	385	385

තරා සහසම්බන්ධතා සංගුණකය

$$r_{K} = 1 - \frac{6 \sum d^{2}}{n (n^{2} - 1)}$$

$$= 1 - \frac{6 \times 44}{10(100-1)}$$

$$= 1 - \frac{264}{10 \times 99}$$

$$= 1 - \frac{264}{990}$$

$$= 1 - 0.27$$

$$r = \frac{n \sum xy - \sum x \sum y}{\sqrt{[n \sum x^2 - (\sum x)^2] [n \sum y^2 - (\sum y)^2]}}$$

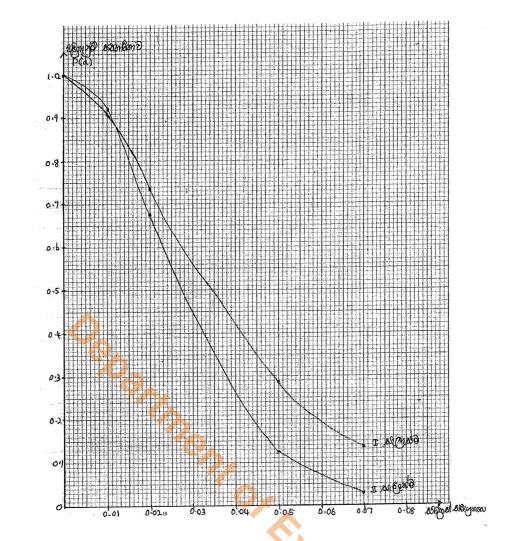
$$= \frac{10 \times 363 - 55 \times 55}{\sqrt{(10 \times 385 - 55^2) (10 \times 385 - 55^2)}}$$

$$= \frac{3630 - 3025}{\sqrt{(3850 - 3025) (3850 - 3025)}}$$

$$= \frac{605}{\sqrt{825 \times 825}}$$

$$= \frac{605}{825}$$

තරා සහසම්බන්ධතා සංගුණකය සහ ගුණිත පූර්ණ සහසම්බන්ධතා සංගුණකය සමාන චේ. විනිශ්චයකරුවන් දෙදෙනාගේ විනිශ්චයේ සැළකිය යුතු මට්ටමක එකඟතාවයක් පවතී.


(ලකුණු 05යි)

(ඉ) I සැලැස්ම : n = 50 c = 1 Π සැලැස්ම : n = 100 c = 2

= 0.73

(i) [සලොස් සමානුපාතය (p)	I es	ලැස්ම	II æ	ැලැස්ම
		λ	P(x ≤ 1)	λ	P(x≤2)
	0.01	0.5	0.9098	1	0.9197
	0.02	1.0	0.7358	2	0.6767
i	0.05	2.5	0.2873	5	0.1246
Ì	0.07	3.5	0.1359	7	0.0296

(ii)

(iii) 2% දෝෂ පුතිශතයේදී 95%ක පිළිගැනීමකට ආසන්<mark>නව ඇත්තේ I</mark> වන සැලැස්ම වන අතර 7% දෝෂ පුතිශතයේදී 5% පිළිගැනීමකට ආසන්න වන්නේ II සැලැස්මයි. මෙම අවශාතා දෙක සපුරාලීම සඳහා එක් සැලැස්මක් පමණක් නම් කළ නොහැකිය.

(ලකුණු 07යි)

$$\overline{P} = \frac{$$
සදොස් ඒකකවල එකතුව $}{\underline{@}} = \frac{90}{10 \times 100} = 0.09$

මධා ෙර්බාව යටත් පාලන සීමාව උඩත් පාලන සීමාව
$$CL = n \, \overline{p}$$
 $LCL = n \, \overline{p} - 3 \sqrt{n \, \overline{p}} \, (1 - \overline{p})$ $UCL = n \, \overline{p} + 3 \sqrt{n \, \overline{p}} \, (1 - \overline{p})$ $= 100 \times 0.09$ $= 100 \times 0.09 - 3 \sqrt{100 \times 0.09 \times 0.91}$ $= 100 \times 0.09 + 3 \sqrt{100 \times 0.09 \times 0.91}$ $= 9 - 3 \sqrt{8.19}$ $= 9 + 3 \sqrt{8.19}$ $= 9 + 3 \times 2.86$ $= 9 + 3 \times 2.86$ $= 9 + 8.58$ $LCL = 0.42$ $UCL = 17.58$

සියලුම නියැදි ලක්ෂ පාලන සීමාවන් තුළ පිහිටන බැවින් නිෂ්පාදන කිුයාවලිය පාලනයට යටත් වේ.

(ලකුණු 03යි)

II කොටස

- (අ) පහත දැක්වෙන පද යුගල අතර වෙනස පැහැදිලි කරන්න.
 - (i) නියැඳි අවකාශය සහ සිද්ධි
 - (ii) අනොහ්තා වශයෙන් බහිෂ්කාර සිද්ධී සහ සාමුහික වශයෙන් නිරවශේෂ සිද්ධී

(ලකුණු 03යි.)

- (ආ) පිරිමි ළමයි 10දෙනෙක් සහ ගැහැණු ළමයි 5දෙනෙක් සිටින පංතියකින් ළමයින් 3දෙනෙකු සසම්භාවි ලෙස තෝරා ගනු ලැබේ. පහත දැක්වෙන සම්භාවිතාවන් සොයන්න.
 - (i) හරියටම **එක්** ගැහැණු ළමයෙක් තෝරා ගැනීම
 - (ii) යටත් පිරිසෙයින් එක් ගැහැණු ළමයෙක් තෝරා ගැනීම

(ලකුණු 04යි.)

(ඉ) පුද්ගලයන් 1000ක් පුමිතිරි බව සහ ඔවුන් කිසියම් සංවර්ධන යෝජනාවකට පක්ෂ ද විරුද්ධ ද යන්න පහත වගුව මඟින් වර්ගීකරණය කර දක්වයි.

	පුරුෂ	ස්තුි	එකතුව
ප ක්ෂ	250	450	700
විරුද්ධ	170	130	300
එකතුව	420	580	1000

පුද්ගලයන් 1000න් කෙනෙක් සසම්භාවි ලෙස තෝරා ගන්නේ නම් පහත දැක්වෙන සම්භාවිතාවන් සොයන්න.

- (i) තෝරාගත් පුද්ගලයා සංව<mark>ර්ධන</mark> යෝජනාවට පක්ෂ වීම.
- (ii) තෝරාගත් පුද්ගලයා පුරුෂයකු බව දී ඇත්නම් ඔහු සංවර්ධන යෝජනාවට පක්ෂ වීම.
- (iii) තෝරාගත් පුද්ගලයා ස්තියක බව දී ඇත්තම් ඇය සංවර්ධන යෝජනාවට විරුද්ධ වීම. (ලකුණු 03යි.)
- (ඊ) A නම් සැපයුම්කරුගේ බෝංචි බීජවල 80%ක පැළවීමේ පුතිශතයක් ඇති අතර B නම් සැපයුම්කරුගේ 70%ක පැළවීමේ පුතිශතයක් ඇත. බීජ අසුරන සමාගමක් බෝංචි බීජවලින් 70%ක් A සැපයුම්කරුගෙන් ද 30%ක් B සැපයුම්කරුගෙන් ද මිල දී ගෙන එම බීජ මිශු කරයි.
 - (i) මිශු කරන ලද බීජවලින් සසම්භාවී ලෙස තෝරා ගන්නා බීජයක් පැළවීමේ සම්භාවීතාව සොයන්න.
 - (ii) තෝරාගත් බීජය පැළ වේ යැයි දී ඇත්නම් එය B සැපයුම්කරුගෙන් මිල දී ගත් එකක් වීමේ සම්භාවිතාව සොයන්න. (ලකුණු 06යි.)
- (උ) විදවුත් පද්ධතියක K_1 , K_2 සහ K_3 නම් උපාංග තුනක් ඇත. K_1 දැවී ගියහොත් K_2 භාවිත වන අතර K_2 දැවී ගියහොත් K_3 භාවිත වේ. K_3 දැවී ගියහොත් පද්ධතිය අකීය වේ. මෙම ඕනෑම උපාංගයක් දැවීයාමේ සම්භාවිතාව 0.2වන අතර උපාංග දැවීයෑම අනෙන්නා වශයෙන් ස්වායක්ත වේ. පද්ධතිය අකිය **නොවීමේ** සම්භාවිතාව කුමක් ද?

පද්ධතියේ විශ්වසනීයත්වය වැඩිකිරීම සඳහා දැවී යෑමේ සමාන සම්භාවිතාව සහිත හතරවෙනි උපාංගය එකතුකරනු ලැබේ. මෙම අලුන් පද්ධතිය අකිුය **නොවීමේ** සම්භාවිතාව කුමක් ද? (ලකුණු 04යි.)

(අ) (i) නියැදි අවකාශය

5.

යම් සසම්භාවී පරීක්ෂණයකින් ලැබිය හැකි සියළුම පුතිඵල අඩංගු වන කුලකය නියැදි අවකාශය ලෙස හඳුන්වයි.

නිදසුන්:

සමබර දාදු කැටයක් පෙරළු විට

 $S = \{1, 2, 3, 4, 5, 6\}$

සිද්ධි

නියැදි අවකාශය තුළ අඩංගු එක් අවයවයක් හෝ අවයව කීපයකින් සෑදුණු කුලකයක් සිද්ධියක් ලෙස හඳුන්වයි.

නිදසුන්:

සමබර දාදු කැටයක් පෙරළු විට ඔත්තේ සංඛ්‍යාවක් ලැබීම.

$$A = \{1, 3, 5\}$$

(ii) අනෙන්නන වශයෙන් බහිෂ්කාර සිද්ධි

එක් සිද්ධියක් සිදුවීම මඟින් අනෙක් සිද්ධිය සිදුවීම වලක්වාලයි නම් ඒවා අනොා්නා වශයෙන් බහිෂ්කාර සිද්ධි වේ. එනම් යම් සිද්ධීන් දෙකක් එකවර සිදු නොවේ නම් ඒවා අනෙනා්නා වශයෙන් බහිෂ්කාර සිද්ධීන් වේ.

නිදසුන්:

සමබර දාදු කැටයක් පෙරළු විට එකවර ඔත්තේ සංඛාාවක් හා ඉරට්ටේ සංඛාාවක් ලැබීම.

සාමූහික වශයෙන් නිරවශේෂ සිද්ධි

යම් සිද්ධි සමූහයක මේලය මඟින් මුළු නියැදි අවකාශයම ආවරණය කරයි නම් ඒවා සාමූහික වශයෙන් තිරවශේෂ සිද්ධි වේ.

නිදසුන්:

සමබර දාදු කැටයක් පෙරළු විට පහට අඩු සංඛාහවක් ලැබීම හා දෙකට වැඩි සංඛාහවක් ලැබීම.

(ලකුණු 03යි)

මයකු තේරීමේ සම්භාවිතාව
$$=$$
 $^5\mathrm{C}_1$

(i) හරියටම එක් ගැහැනු ළමයකු තේරීමේ සම්භාවිතාව
$$= \frac{{}^{5}C_{1} \times {}^{10}C_{2}}{{}^{15}C_{3}}$$
 $= \frac{\frac{5!}{4!} \frac{1!}{1!} \times \frac{10!}{8!} \frac{1}{2!}}{\frac{15!}{12!} \frac{1}{3!}}$

$$= \underbrace{\frac{5x4!}{41x1!} x \frac{10x9x8!}{8! \ 2x1}}_{15x14x13x12!}$$

$$\underbrace{\frac{15x14x13x12!}{12! \ 3x2x1}}$$

ගැහැනු ළමයි : 5

$$= \frac{5x45}{455}$$

$$= \frac{225}{455}$$

$$(ii)$$
 යටත් පිරිසෙන් එක් ගැහැනු ළමයකු තේරීමේ සම්භාවිතාව = $1 - \frac{^{10}{\rm C_3}}{^{15}{\rm C_3}}$

$$= 1 - \frac{10!}{7! \ 3!}$$

$$= 1 - \frac{10x9x8x7!}{\frac{7! \times 3x2x1}{455}}$$

$$= 1 - \frac{120}{455}$$

$$= \frac{335}{455}$$

$$= \frac{67}{91}$$

හෝ

යටත් පිරිසෙන් එක් ගැහැනු ළමයකු තේරීමේ සම්භාවිතාව =
$$\frac{{}^5\mathrm{C_1}\,\mathrm{x}\,{}^{10}\mathrm{C_2}}{{}^{15}\mathrm{C_3}} + \frac{{}^5\mathrm{C_2}\,\mathrm{x}\,{}^{10}\mathrm{C_1}}{{}^{15}\mathrm{C_3}} + \frac{{}^5\mathrm{C_3}}{{}^{15}\mathrm{C_3}}$$

$$= \frac{225}{455} + \frac{100}{455} + \frac{10}{455}$$

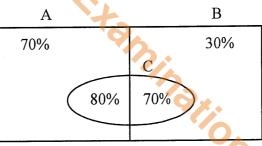
$$= \frac{335}{455}$$

$$= \frac{67}{91}$$
(ලකුණු 043)

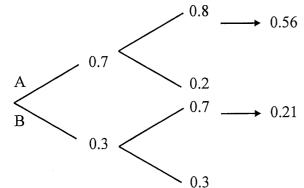
(9) (i)
$$\frac{700}{1000} = \frac{7}{10}$$

(ii)
$$\frac{250}{420} = \frac{25}{42}$$

(iii)
$$\frac{130}{580} = \frac{13}{58}$$


P(C)

0.77


(ලකුණු 03යි)

(ඊ) A: A සැපයුම්කරු සපයන බීජ $\mathrm{B}:\mathrm{B}$ සැපයුම්කරු සපයන බීජ

C : බීජ පැළවීම

(i)
$$P(C) = P(A) \cdot P(C/A) + P(B) \cdot P(C/B)$$

= $0.7 \times 0.8 + 0.3 \times 0.7$
= $0.56 + 0.21$
= 0.77
= 0.77
(ii) $P(B/C) = P(B) \cdot P(C/B)$
= 0.3×0.7
= 0.77
= 0.21

$$\begin{array}{r}
\hline
0.77 \\
= 21 \\
\hline
77 \\
= 0.27
\end{array}$$

(i)
$$0.56 + 0.21 = \underline{0.77}$$

(ii) $\underline{21} = \underline{0.27}$

(ලකුණු 06යි)

(c)
$$P(K_1) + P(K_1' \cap K_2) + P(K_1' \cap K_2' \cap K_3) = 0.8 + 0.2 \times 0.8 + 0.2 \times 0.2 \times 0.8$$

= $0.8 + 0.16 + 0.032$
= 0.992

$$P(K_{1}) + P(K_{1}' \cap K_{2}) + P(K_{1}' \cap K_{2}' \cap K_{3}) + P(K_{1}' \cap K_{2}' \cap K_{3}' \cap K_{4}) = 0.992 + 0.2 \times 0.2 \times 0.2 \times 0.8$$

$$= 0.9984$$

(ලකුණු 04යි)

Department of literations of the minations

- 6. (අ) (i) එක්තරා නගරයක කුටුම්භයන්ගෙන් 20%ක් යම් සබන් වර්ගයක් මිල දී ගන්නා බව සොයාගෙන ඇත. කිසියම් සමීක්ෂණයක දී කුටුම්භ විසින් මෙම සබන් වර්ගය මිල දී ගත්තේදැයි සෙවීම සඳහා විමර්ශකයන් 100දෙනකු විසින් කුටුම්භ 10ක සසම්භාවී නියැඳි ලබාගන්නා ලදී. නියැඳිවල මෙම සබන් වර්ගය මිල දී ගන්නා කුටුම්භ වැඩිම වශයෙන් 3ක් සිටින විමර්ශකයන් කොපමණ සංඛාාවක් වාර්තා කරන්නේදැයි අපේක්ෂා කළ හැකි ද?
 - (ii) නිෂ්පාදකයෙක් තම නිෂ්පාදනයෙන් වැඩිම වශයෙන් 10%ක් දෝෂ සහිත වේ යැයි පුකාශ කර සිටී. ඔහුගේ පුකාශය පරීක්ෂා කිරීම සඳහා ඒකක 15ක් සසම්භාවී ලෙස තෝරා ගන්නා ලද අතර තෝරාගත් ඒකක 15 තුළ වැඩිම වශයෙන් ඒකක 2ක් දෝෂ සහිත නම් ඔහුගේ පුකාශය පිළිගනු ලැබේ. ඒකකයක් දෝෂ වීමේ සතා සම්භාවිතාව 0.2 නම් නිෂ්පාදකයාගේ පුකාශය පිළිගැනීමේ සම්භාවිතාව සොයන්න. (ලකුණු 06යි.)
 - (ආ) (i) කිසියම් දුරකථන පුවරුවකට පැයකට ලැබෙන සාමානය ඇමතුම් ගණන 420ක් වේ. දුරකථන පුවරුවට මිනිත්තුවකට වැඩිම වශයෙන් ඇමතුම් 15ක් සම්බන්ධ කළ හැකි ය. පොයිසෝන් වායාප්තියක් උපකල්පනය කර දෙන ලද මිනිත්තුවක දී ඇතැම් ඇමතුම් සම්බන්ධ කිරීමට අපොහොසත් වීමේ සම්භාවිතාව සොයන්න.
 - (ii) සාප්පුවක කිසියම් භාණ්ඩයක් සඳහා දෛනික ඉල්ලුම මධානාය 2 වන පොයිසෝන් වාාාප්තියක් පිහිටා ඇත. සාප්පුකරු එක් එක් දින තුනක කාලච්ඡේදයක් ආරම්භයේ දී තොග තබා ගනී නම්, කාලච්ඡේදය තුළ ඉල්ලුම සපුරාලීම 95%කින් සහතික වීම සඳහා ඔහු කාලච්ඡේදය ආරම්භයේ දී කොපමණ අයිතම සංඛාාවක් තබාගත යුතු ද? (ලකුණු 06යි.)
 - (ඉ) (i) කිසියම් විදුලි උපාංගයක ආයුකාලය, මධානාපය පැය 800 සහ සම්මත අපගමනය පැය 60 වන පුමත වසාප්තියක පිහිටා ඇත. පැය 680කට පෙර උපාංගය දැවී යෑමේ සම්භාවිතාව කුමක් ද? සම්මත අපගමනය පැය 60 වශයෙන්ම පවතී නම්, උපාංග වලින් 10%ට නොවැඩි පුමාණයක්
 - පැය 800කට පෙර දැවී යාම සහතික කෙරෙන මධානාගේ අගය කුමක් විය හැකි ද? (ii) පොයිසොන් වනාප්තිය පුමත වනාප්තිය මඟින් සන්නිකර්ෂණය කළ හැකි වන්නේ කුමන
 - කොන්දේසි යටතේ ද? විශාල කර්මාන්ත ශාලාවක මසකට යන්තුවල කියාවිරහිතවීම් සාමානායෙන් 16ක් ඇති වේ. කියාවිරහිතවීම් නියත අනුපාතයකින් සසම්භාවීව සහ එකිනෙකින් ස්වායක්තව සිදුවේ

කියාවිරහිතවීම් නියත අනුපාතයකින් සසමභාවව සහ චක්ෂනක්න ස්ථායකතට සිදුවෙ යැයි උපකල්පනය කර මාසයක කාලයක් තුළ කියාවි<mark>රහි</mark>ත වීම් 22කට වඩා සිදු**නොවීමේ** සම්භාවිතාව සොයන්න. (ලකුණු 08යි.)

6.

(a) (i) X : සබන් වර්ගය මිලදී ගන්නා කුටුම්භ ගණන

(ii) X : දෝෂ සහිත ඒකක ගණන

n = 15 P = 0.2 q = 0.8
P(X = x) =
$${}^{n}C_{x}$$
 P^x q^{n-x} ; $x = 0, 1, 2, \dots, 15$
P(X = x) = ${}^{15}C_{x}$ (0.2)^x (0.8)^{15-x}

$$P(x \le 2) = 0.0352 + 0.1319 + 0.2309 + 0.2013$$

= 0.3980

නිෂ්පාදකයාගේ පුකාශය පිළිගැනීමේ සම්භාවිතාවය = 0.3980

(ලකුණු 06යි)

(ආ) (i) X : මිනිත්තුවකදී ලැබෙන ආදායම් ගණන

$$\lambda = \frac{420}{60} = 7$$

$$P(X = x) = \frac{e^{-\lambda} \lambda^{x}}{x!}$$
$$= \frac{e^{-7} 7^{x}}{x!}$$

;
$$x = 0, 1, 2, \dots \infty$$

$$P(x > 15) = 1 - P(x \le 15)$$

= 1 - 0.9975
= 0.0025

(ii) X : දින තුනකදී ඉල්ලුම

$$\lambda = 2 \times 3 = 6$$

$$P(X = x) = \frac{e^{-\lambda} \lambda^{x}}{x!}$$

$$= \frac{e^{-6} 6^{x}}{x!}$$

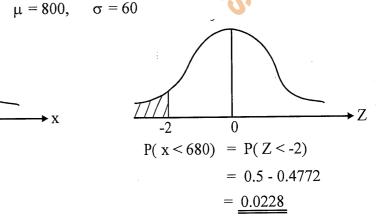
$$x = 0, 1, 2, \dots \infty$$

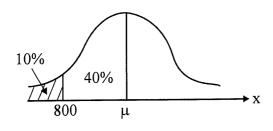
$$P(x \le 9) = 0.9161$$

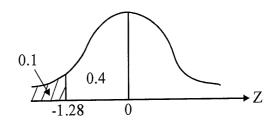
$$P(x \le 10) = 0.9574$$

අයිතම සංඛපාව = 10

(ලකුණු 06යි)


(ඉ) (i) X : උපාංගයෙහි ආයු කාලය


$$Z = \underline{x - \mu}$$


$$=\frac{680 - 800}{60}$$

$$= -120$$
 $\overline{60}$

$$Z = -2$$

$$Z = \underline{x - \mu}$$

$$-1.28 = 800 - \mu$$

$$-1.28 \times 60 = 800 - \mu$$

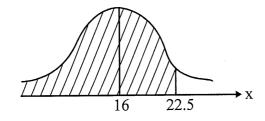
$$\mu = 800 + 76.8$$

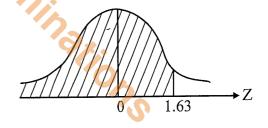
(මධානාය = පැය 876.8)

(ii) λ විශාල විය යුතුය $(\lambda > 10)$

$$\lambda = 16$$

$$\mu = \lambda$$


$$\mu = 16$$


$$\sigma = \sqrt{\lambda}$$

$$\sigma = \sqrt{16}$$

$$\sigma = 4$$

X ∩ N (16, 16)

$$Z = \frac{x - \mu}{\sigma}$$
$$= \frac{22.5 - 16}{4}$$

$$Z = 1.625$$

$$P(x < 22.5) = P(Z < 1.63)$$

$$= 0.5 + 0.4484$$

$$= 0.9484$$

(ලකුණු 08යි)

- 7. (අ) එක් එක් කුමයෙහි වාසි **දෙකක්** සහ අවාසි **දෙකක්** දක්වමින් පහත දැක්වෙන නියැදි කුම විස්තර කරන්න.
 - (i) ස්තෘත සසම්භාවී නියැඳීම

 \overline{y} ගණනය කරන්න.

- (ii) පොකුරු නියැඳීම
- (iii) කොටස් නියැඳීම

(ලකුණු 06යි.)

- (ආ) A නිෂ්පාදකයාගේ විදුලි බුබුළුවල ආයුකාලය සම්මත අපගමනය පැය 200ක් සහිතව මධානාය ආයුකාලය පැය 1600ක් වන අතර B නිෂ්පාදකයාගේ විදුලි බුබුළුවල ආයු කාලය සම්මත අපගමනය පැය 100ක් සහිතව මධානා අායුකාලය පැය 1400ක් වේ. එක් එක් වර්ගයෙන් විදුලි බුබුළු 125ක සසම්භාවී නියැඳිය බැඟින් පරීක්ෂා කරන්නේ නම්, A වර්ගයේ නියැඳිමධානාය ආයුකාලය අායුකාලය අායුකාලය අායුකාලය අායුකාලය අායුකාලය අවිරියිම සම්භාවිතාව කුමක් ද?
 - (ඉ) (i) තරම N=6 වන සංගහනයක Y විචලායෙහි අගයයන් 8, 4, 2, 10, 5, 7 වේ. මෙම සංගහනයෙන් ලබාගත හැකි තරම 2 වන සියලුම සරල සසම්භාවි නියැඳි සඳහා නියැඳි මධානයෙ y ගණනය කරන්න.
 - \overline{y} හි නියැඳුම් වනප්තිය භාවිත කර නියැඳි මධානාය \overline{y} යනු සංගහන මධානාය \overline{Y} සඳහා අනභිනත නිමානකයක් බව සතාවපනය කරන්න.
 - සූතුය පමණක් භාවිත කර \overline{y} හි විචලතාව ගණනය කරන්න. (ii) (i) හි දී ඇති සංගහනයෙන් ලබාගත හැකි සියලුම කුමවත් නියැඳි සඳහා නියැඳි මධානාස
 - \overline{y} හි නියැඳුම් වහපේතිය භාවිත කර නියැඳි මධානාපය \overline{y} යනු සංගහන මධානාපය \overline{Y} සඳහා අනභිනත නිමානකයක් බව සතාපපනය කරන්න.
 - \overline{y} හි නියැඳුම් වාාාප්තිය භාවිත කර නියැඳි මධානාය \overline{y} හි විචලතාව සොයා සරල සසම්භාවී නියැඳීමට සාපේක්ෂව කුමවත් නියැඳීමෙහි කාර්යක්ෂමතාව සොයන්න. (ලකුණු 08යි.)

7.

(අ) (i) ස්තෘත සසම්භාවී නියැදීම

ඒකක N වලින් සමන්විත සංගහනයක් $N_1,\,N_2,\,N_3,\,....$ N_L වලින් යුක්ත උප සංගහන හෙවත් ස්තෘත L පුමාණයකට බෙදීමෙන් පසු එක් එක් ස්තරයෙන් ස්වායත්ත ලෙස සසම්භාවී නියැදිය බැගින් තෝරා ගැනීමෙන් සමන්විත වන නියැදීම් කිුිිියාවලිය ස්තෘත සසම්භාවී නියැදීම යනුවෙන් හඳුන්වයි. මෙහිදී ස්තෘත අතර විචලනය වැඩි විය යුතු අතර ස්තෘත තුළ විචලනය අඩුවිය යුතුයි.

වාසි

- 🔷 නියැදිය මඟින් සංගහනය වඩාත් හොඳින් නිරූපණය කරයි.
- 🔷 සමජාතීය නොවන සංගහනයකින් නිරුපා නියැදියක් ලබාගත හැකිවීම.
- 🔷 එක් එක් ස්තර සඳහාද වෙන වෙනම පරාමිති නිමානය කළ හැකිවීම.
- 🔷 සංගහනය විශාල වශයෙන් කුටික අවස්ථාවලදී නියැදියක් තේරීම සඳහා වඩාත් පහසු වේ.
- 🔷 පුතිඵලවල නිරවදාාතාව මැනිය හැකි අතර පුතිඵල වැඩිදුර ගණනය කිරීම් සඳහා යොදාගත හැකිවීම.
- 🔷 නියැදි සමීක්ෂණ කටයුතු පරිපාලනය කිරීම පහසු වේ.

අවාසි

- නියැදුම් රාමුවක් නොමැතිව නියැදීම කළ නොහැකි වීම.
- 🔷 විශාල වශයෙන් මුදල්, කාලය හා ශුමය වැයවන කුමයක් වීම.
- 🔷 ස්තර එකිනෙක ඡේදනය වන අවස්ථාවලදී භාවිතා කළ නොහැකි වීම.
- 🔷 සංගහනය ලාක්ෂණිකවලට අනුව සමජාතීය වන පරිදි ස්තරවලට වෙන් කිරීමේ දුෂ්කරතා පැවතීම.

(ii) පොකුරු නියැදීම

සංගහනය පොකුරු වශයෙන් කාණ්ඩ කර සරල සසම්භාවී ලෙස තෝරා ගත් පොකුරුවල සියලුම නියැදුම් ඒකක නියැදියට ඇතුළත් කරගැනීම පොකුරු නියැදීම වේ. පොකුරු වශයෙන් කාණ්ඩ කිරීමේදී කාණ්ඩ තුළ වීචලනය වැඩි වන ආකාරයට සහ කාණ්ඩ අතර වීචලනය අඩුවන ආකාරයට කළ යුතු වේ.

වාසි

- 🔷 නියැදුම් රාමුවක් නොමැති විට වූවද නියැදීම සිදු කළ හැකිය.
- 🔷 සංගහනය විශාල විට මෙන්ම භුගෝලීය වශයෙන් වාහප්ත වී ඇති විට වුවද යොදාගත හැකි වීම.
- වඩාත් නමාශීලි නියැදීමේ කුමයක් වීම.
- 🔷 ක්ෂේතු වියදම අඩු වීම හා අධීක්ෂණය සහ පරිපාලනය පහසු වීම.
- 🔷 සංගහනය ස්වභාවිකව පොකුරු වශයෙන් ඇති විට වඩා පහසු වීම.

අවාසි

- 🔷 අනෙක් සම්භාවිතා නියැදි කුමවලට සාපේක්ෂව නිරවදානාවයෙන් අඩු නියැදීමේ කුමයක් වීම.
- ම පොකුරු අතර වෙනස්කම් පැවතිය හැකිවීම.
- 🔷 කාර්යක්ෂමතාවය අඩු විය හැකිවීම.
- 🔷 පුද්ගල බද්ධතාවයක් වැඩි නියැදි කුමයක් වීම. (සංගහනය පොකුරුවලට බෙදීම යනාදියේදී)

(iii) කොටස් නියැදීම

මෙය නිස්සම්භාවී / සසම්භාවී නොවන නියැදි ශිල්පීය කුමයක් වේ. මෙමඟින් සංගහනය යම් ලාක්ෂණික කිහිපයකට අනුව කාණ්ඩ කර එම එක් එක් කාණ්ඩය තුළින් තීරණය කරන ලද නියදුම් ඒකක පුමාණයන් වීමර්ශකයාගේ අභිමතය පරිදි තෝරා ගැනීමේ කිුිිියාවලිය කොටස් නියැදීම වේ.

tami

වාසි

- 🔷 නියැදුම් රාමුවක් මත පදනම් නොවීම.
- 🔷 කාලය, ශුමය හා පිරිවැය අවම වීම.
- 🔷 පරිපාලන හා අධීක්ෂණ කටයුතු පහසු වීම.
- 🔷 පහසුවෙන් නියැදිය තෝරාගත හැකිවීම.
- 🔷 විමර්ශකයාගේ පළපුරුද්ද මත හොඳ නියැදියක් තෝරා ගත හැකිවීම.
- සංගහනය පුවර්ග වන පැතිකඩ වැඩි වන විට නිරූපා නියැදියක් ලැබීම.

අවාසි

- 🔷 නියැදිය තෝරා ගැනීමේදී පුද්ගල අභිමතය බලපාන බැවින් යථාතථා නියැදියක් නොලැබීම.
- 🔷 සම්භාවිතා පදනමක් නොමැති වීම නිසා සංඛාානමය අනුමිතීන් සඳහා පුතිඵල යොදාගත නොහැකි වීම.
- 🔷 පුතිඵලවල විශ්වාසනීයත්වය අඩු වීම.
- ♦ ප්‍රතිඵලවල නිරවදාෳතාවය මැනිය නොහැකි අතර ප්‍රතිඵල වැඩිදුර ගණනය සඳහා යොදාගත නොහැකි වීම.

(ලකුණු 06යි)

(අp)

$$\begin{array}{ccc} A & & & B \\ \mu_1 = 1600 & & \mu_2 = 1400 \\ \sigma_1 = 200 & & \sigma_2 = 100 \\ n_1 = 125 & & n_2 = 125 \end{array}$$

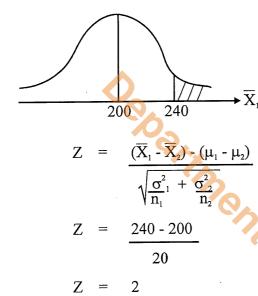
සංගහනය පුමතව විසිරී ඇතැයි දී නොතිබුණද නියැදි තරම පුමාණවත් තරම් විශාල වන බැවින් නියැදි මධායනායන් දෙකක අන්තරයේ නියැදුම් වාහප්තිය ආසන්නව පුමථව වාහප්ත වේ.

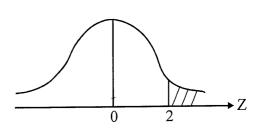
$$\mu_{\overline{x}_1 - \overline{x}_2} = \mu_1 \cdot \mu_2$$

$$= 1600 - 1400$$

$$= 200$$

$$\sigma_{\overline{X}_1 - \overline{X}_2} = \sqrt{\frac{\sigma_1^2 + \sigma_2^2}{n_1}}$$


$$= \sqrt{\frac{200 \times 200}{125} + \frac{100 \times 100}{125}}$$


$$= \sqrt{320 + 80}$$

$$= \sqrt{400}$$

$$= 20$$

$$\overline{X}_1 - \overline{X}_2 \sim N(200, 400)$$

$$P(\overline{X}_1 - \overline{X}_2 > 240) = P(Z > 2)$$

= 0.5 - 0.4772
= 0.0228

(ලකුණු 06යි)

(9) (i)
$$\{8,4\}\{8,2\}$$
 $\{8,10\}$ $\{8,5\}$ $\{8,7\}$ $\{4,2\}$ $\{4,10\}$ $\{4,5\}$ $\{4,7\}$ $\{2,10\}$ $\{2,5\}$ $\{2,7\}$ $\{10,5\}$ $\{10,7\}$ $\{5,7\}$ \overline{y}_i : 6 5 9 6.5 7.5 3 7 4.5 5.5 6 3.5 4.5 7.5 8.5 6

$$\overline{y}$$
: 3 3.5 4.5 5 5.5 6 6.5 7 7.5 8.5 9 $P(\overline{y})$: $\frac{1}{15}$ $\frac{1}{15}$ $\frac{2}{15}$ $\frac{1}{15}$ $\frac{1}{15}$ $\frac{3}{15}$ $\frac{1}{15}$ $\frac{1}{15}$ $\frac{2}{15}$ $\frac{1}{15}$ $\frac{1}{15}$

$$E(\overline{y}) = \Sigma \overline{y} \cdot P(\overline{y})$$

$$= 3 \times \frac{1}{15} + 3.5 \times \frac{1}{15} + 4.5 \times \frac{1}{15} + 5 \times \frac{1}{15} + 5.5 \times \frac{1}{15} + 6 \times \frac{1}{15} + 6.5 \times \frac{1}{15} + 7 \times \frac{1}{1$$

සංගහන මධායනා
$$(\overline{Y})$$
 සංගහන විචලකාවය (S^2) $Y = \left(\frac{\Sigma Y}{N}\right)$ $S^2 = \frac{\Sigma (y - \overline{y})^2}{N}$ $= \frac{(8 + 4 + 2 + 10 + 5 + 7)}{6}$ $= \frac{36}{6}$ $= \frac{4 + 4 + 16 + 16 + 1 + 1}{6}$ $= \frac{42}{6}$ $= 7$

 $E(\overline{y}) = \overline{Y}$

නියැදි මධානාය (\overline{y}) , සංගහන මධානාය (\overline{Y}) සඳහා අනභිනත නිමානකයකි.

ම්වලකාවය
$$Var(\overline{y}) = \frac{S^2}{n} \left(\frac{N \cdot n}{N \cdot 1} \right)$$

$$= \frac{7}{2} \left(\frac{6 \cdot 2}{6 \cdot 1} \right)$$

$$= \frac{7x \cdot 4}{2 \cdot x \cdot 5}$$

$$= \frac{2 \cdot 8}{2}$$
(ii)
$$K = \frac{N}{n} \quad \{ 8, 4, 2, 10, 5, 7 \}$$

$$= \frac{6}{2}$$

$$= 3$$

$$\overline{y} : 4.5 \quad 9$$

$$P(\overline{y}) : \frac{2}{3} \quad \frac{1}{3}$$

$$E(\overline{y}) = \Sigma \overline{y} \cdot P(\overline{y})$$

$$= 4.5 \times \frac{2}{3} + 9 \times \frac{1}{3}$$

$$= \frac{9 + 9}{3}$$

$$= 18 = 6$$

$$E(\overline{y}) = \overline{Y}$$

නියැදි මධානාය (\overline{y}) , සංගහන මධානාය (\overline{Y}) සඳහා අනභිනන නිමානකයකි.

විචලතාවය
$$Var(\overline{y}) = \Sigma \overline{y}^2 \cdot P(\overline{y}) - [E(\overline{y})]^2$$

$$= 4.52 \times \frac{2}{3} + 92 \times \frac{1}{3} - 62$$

$$= 40.5 + 81 - 36$$

$$= 40.5 - 36$$

$$= 4.5$$

සරල සසම්භාව නියැදීමෙහි විචලතාවයට වඩා කුමවත් නියැදීමෙහි විචලතාවය වැඩි බැවින් කුමවත් නියැදීමෙහි කාර්යක්වෙතාවය අඩුවේ. (ලකුණ

(ලකුණු 08යි)

- 8. (අ) පහත දැක්වෙන එක එකක් පද යුගලය අතර වෙනස පැහැදිලි කරන්න.
 - (i) සරල කල්පිතය සහ සංයුක්ත කල්පිතය
 - (ii) කල්පිත පරීක්ෂාවක බලය සහ ඉතා බලවත් අවධි පෙදෙස
 - (iii) වෙසෙසියා මට්ටම සහ p-අගය

(ලකුණු 03යි.)

(අා) කිසියම් නගරයක දින 300ක් තුළ සිදුවන අනතුරු සංඛ්යාව පහත දැක්වේ.

අනතුරු සංඛනාව	0	1	2	3	4	5	6	7	8	9	10
දින ගණන	28	32	70	60	50	30	20	5	3	1	1

- (i) මෙම දත්ත සඳහා පොයිසොන් වනප්තියක් අනුසීහුමය කරන්න.
- (ii) 5% වෙසෙසියා මට්ටමකින් අනුසීහුමේ හොඳකම පරීක්ෂා කර ඔබගේ නිගමනය දක්වන්න. (ලකුණු 05යි.)
- (ඉ) බෝවන රෝග තත්වයක දී පුද්ගලයන් 500කට රෝගය වැළඳී ඇති අතර ඉන් පුද්ගලයන් 300දෙනෙකුට පුතිකාර නොලැබිණි. පුතිකාර නොලැබුණු අයගෙන් 80දෙනෙකු සුව නොවුණු අතර පුතිකාර ලැබූ අයගෙන් 70දෙනෙකු සුව විය. රෝගය සුව කිරීම සඳහා පුතිකාරය ඵලදායී නොවූ බව 5% වෙසෙසියා මට්ටමකින් පරීක්ෂා කරන්න. පරීක්ෂාවේ p-අගය කුමක් ද? (ලකුණු 05යි.)
- (ඊ) එක් එක් යන්තුයෙන් වෙනස් පැය 5ක සසම්භාවි නියැඳි සඳහා යන්තු 3ක නිරීක්ෂණය කරන ලද නිමැවුම පහත වගුවේ දැක්වේ.

යන්නු I	යන්නු II	යන්තු III
· · · · · 65 43	5 (10
8	3	7
5	8	11
12	7 🔾	10
9	7	12
40	30	50

$$\sum \sum x_{ij}^2 = 1060$$

- (i) මෙම දත්ත විශ්ලේෂණය කිරීම සඳහා විචලතා විශ්ලේෂණ ආකෘතිය ලියා දක්වන්න.
- (ii) විචලතා විශ්ලේෂණ වගුව ගොඩනගා 5% වෙසෙසියා මට්ටමේ දී යන්නු තුනෙහි මධානාය නිමවුම සමාන වේ යන කල්පිතය පරීක්ෂා කරන්න.
- (iii) II වන යන්තුයේ මධානය නිමැවුම සහ III වන යන්තුයේ මධානයය නිමැවුම අතර වෙනස සඳහා 95%ක වීශුම්භ පුාන්තරයක් ගොඩනගන්න. (වීචලතා විශ්ලේෂණ වගුවේ මධානයය වර්ග දෝෂය (MSE), පොදු වීචලතාව σ^2 සඳහා නිම්තය ලෙස භාවිත කරන්න). (ලකුණු 07යි.)

8.

(අ) (i) සරල කල්පිතය

කිසියම් කල්පිතයක් සතා විට ඊට අදාළ සංගහන වාාප්තිය සම්පූර්ණයෙන්ම නිශ්චය වේ නම් එය සරල කල්පිතයක් වේ. එනම් සංගහන පරාමිතීන් සහ සම්භාවිතා වාාප්තිය නිශ්චය විය යුතුය.

සංයුත කල්පිතය

කිසියම් කල්පිතයක් සතා විට ඊට අදාළ සංගහන වාාප්තිය සම්පූර්ණයෙන්ම නිශ්චය නොවේ නම් එය සංයුත කල්පිතයක් චේ.

(ii)කල්පිත පරීක්ෂාවක බලය

කල්පිත පරීක්ෂාවකදී දෙවන පුරූප දෝෂය සිදු නොවීමේ සම්භාවිතාව පරීක්ෂාවේ බලය වේ. එනම් අපුතිෂ්ඨයේ කල්පිතය අසතා විට එය පුතික්ෂේප වීමේ සම්භාවිතාව පරීක්ෂාවේ බලය වේ.

ඉතා බලවත් අවධි පෙදෙස

වෙසෙසියා මට්ටම නියතව පවතින විට පරීක්ෂාවේ බලය උපරිම වන අවධි පෙදෙස ඉතා බලවත් අවධි පෙදෙස ලෙස හඳුන්වයි.

(iii) වෙසෙසියා මට්ටම

පළමු පුරූප දෝෂය සිදුවීමේ සම්භාවිතාව හෙවත් අපුතිෂ්ඨයේ කල්පිතය සතා විට එය පුතික්ෂේප කිරීමේ සම්භාවිතාව වෙසෙසියා මට්ටම වේ.

P අගය

කල්පිත පරීක්ෂාවකදී ගණනය කරන ලද පරීක්ෂා සංඛාහතියට අනුව අවධි පෙදෙසෙහි වර්ගඵලය P අගය ලෙස හැඳින්වේ. මෙය නිරීක්ෂිත වෙසෙසියා මට්ටම ලෙසද හැඳින්වේ. එනම් පරීක්ෂා සංඛාහතියට අනුව අපුතිෂ්ඨයේ කල්පිතය පුතික්ෂේප කළ හැකි අවම වෙසෙසියා මට්ටම වේ. අපුතිෂ්ඨයේ කල්පිතය සතා යැයි උපකල්පනය යටතේ P අගය ගණනය කරයි.

(ලකුණු 03යි)

$$\overline{x} = \frac{\sum fx}{\sum f}$$

$$= \frac{900}{300}$$

$$= 3$$

$$P(X = x) = \frac{e^{-\lambda} \lambda^{x}}{x!} ; x = 1, 2, 3 \dots$$

$$= \frac{e^{-3} 3^{x}}{x!}$$

$$\lambda = \overline{x}$$
$$\lambda = 3$$

(ii) කල්පිත ගොඩනැගීම

 H_0 : නගරයෙහි දිනකදී සිදුවන අනතුරු ගණන සඳහා පොයිසෝන් වහාප්ති අනුසීහනය යෝගා වේ. H_1 : පොයිසෝන් වහාප්ති අනුසීහනය යෝගා නොවේ.

පරීක්ෂා සංඛානතිය

O_i	${ m E_i}$	O_i - E_i	$(O_i - E_i)^2$	$(O_i - E_i)^2 / E_i$
28	15	13	169	1.27
32	45	-13	169	3.75
70	67	3	9	0.13
60	67	-7	49	0.73
50	50	0	0	0
30	30	0	0	0
20	15	5	25	1.67
10	9	1	1	0.11
			γ^2	= 17.66

පරීක්ෂාව

ක්ෂාව
$$lpha = 0.05$$
 $d\cdot f = k-1 \cdot m$ $= 8-1 \cdot 1$ $= 6$ $12.6 \cdot 17.66 \cdot \chi^2$ පිළිගැනුම් පෙදෙස අවධි

තීරණ තීතිය

 $\chi^2_{_{\mbox{\scriptsize cal}}} > \chi^2_{_{0.05,(k-1-m)}}$ විට $H_{_{\mbox{\scriptsize o}}}$ පුතික්ෂේප කරයි.

තීරණය : 17.66 > 12.66 බැවින් H_{\circ} පුතික්ෂේප කරයි. එනම් පරීක්ෂා සංඛානතිය අවධි පෙදෙසෙහි පිහිටන බැවින් $H_{\scriptscriptstyle 0}$ පුතික්ෂේප කරයි

මපලෙදස

නිගමනය : නගරයෙහි දිනකට සිදුවන අනතුරු ගණන සඳහා පොයිසෝන් වාාාප්ති අනුසීහනය යෝගා නොවන බවට 0.05 මට්ටමේදී පුමාණවත් සාක්ෂි පවතී.

(ලකුණු 05යි)

(ඉ) කල්පිත ගොඩනැගීම

 $H_o: \pi_1 \geq \pi_2$

නෝ

 $H_o: \pi_1 = \pi_2$

 $\pi_{_{\! 1}}$: පුතිකාර ලැබීමෙන් සුවවීම

 $H_1: \pi_1 < \pi_2$

 $H_{\scriptscriptstyle 1}:\,\pi_{\scriptscriptstyle 1}<\pi_{\scriptscriptstyle 2}$

 $\pi_{\scriptscriptstyle 2}$: පුතිකාර නොලැබීමෙන් සුවවීම

පරීක්ෂා සංඛාාතිය

පුතිකාර ලැබූ

 $n_1 = 200$

$$P_{1} = \frac{70}{200} = 0.35$$

පුතිකාර නොලැබූ

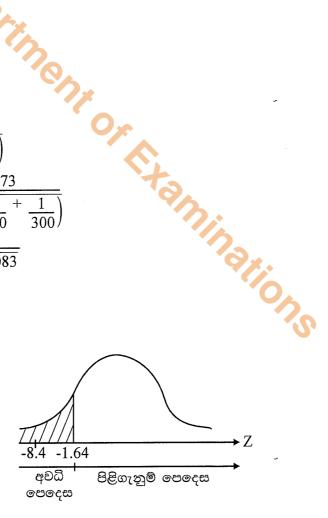
$$n_2 = 300$$

$$P_2 = \frac{220}{300} = 0.73$$

$$\overline{P} = \frac{n_1 P_1 + n_2 P_2}{n_1 + n_2}$$

$$= \frac{200 \times 0.35 + 300 \times 0.73}{200 + 300}$$

$$= \frac{70 + 220}{500}$$


= 0.58

 $Z = \frac{P_1 - P_2}{\sqrt{\overline{P}(1-\overline{P})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$ $= \frac{0.35 - 0.73}{\sqrt{0.58 \times 0.42 \left(\frac{1}{200} + \frac{1}{300}\right)}}$ $= \frac{-0.38}{\sqrt{0.58 \times 0.42 \times 0.0083}}$

0.045

= -0.38

පරීක්ෂාව : $\alpha = 0.05$

තීරණය : පරීක්ෂා සංඛාාතිය අවධි පෙදෙසෙහි පවතින බැවින් $\mathrm{H}_{\scriptscriptstyle{0}}$ පුතික්ෂේප කරයි.

නිගමනය : රෝගය සුවවීම සඳහා පුතිකාරය ඵලදායී නොවන බව 5% මට්ටමේදී පිළිගැනීමට පුමාණවත් තරම් සාක්ෂි පවතියි.

P අගය 0 ක් වේ. (Z= - 8.4)

(ලකුණු 05යි)

(ඊ) (i)
$$x_i = \mu + \alpha_i + e_{ij}$$

 \mathbf{x}_{i} - i වෙනි යන්තුයෙහි i වන සිටවුම් අගය

μ - සමභාර මධානනය

 $lpha_i$ - i වෙනි යන්තුය නිසා ඇතිවන ඵලය

e;; - සසම්භාවී දෝෂය

 $e_{ii} \sim N\left(o,\sigma^{2}\right)$ ලෙස උපකල්පනය කරනු ලැබේ.

$$H_0: \mu_1 = \mu_2 = \mu_3$$

 $\mathrm{H_{1}}$: අවම වශයෙන් යන්තු දෙකක් අතර නිෂ්පාදන වෙනසක් පවතී.

මහර

 $H_1: \mu_i \neq \mu_i$

(අඩු වශයෙන් එක් ij සඳහාවත්)

$$T = \sum x_1 + \sum x_2 + \sum x_3$$

= $40 + 30 + 50$

$$T = 120$$

ඉශෝධන සාධකය =
$$\frac{T^2}{N}$$
 = $\frac{120 \times 120}{15}$ = 960

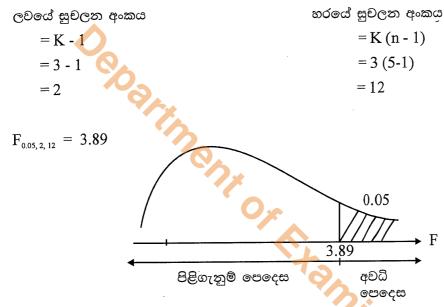
SST =
$$\Sigma x_1^2 + \Sigma x_2^2 + \Sigma x_3^2 - T^2/N$$

= 1060 - 960
= 100

$$SSC = \frac{(\Sigma x_1)^2}{n_1} + \frac{(\Sigma x_2)^2}{n_2} + \frac{(\Sigma x_3)^2}{n_3} - \frac{T^2}{N}$$

$$= \frac{40 \times 40}{5} + \frac{30 \times 30}{5} + \frac{50 \times 50}{5} - 960$$

$$= 320 + 180 + 500 - 960$$


$$= 1000 - 960$$

$$= 40$$

$$SSE = SST - SSC$$
$$= 100 - 40$$
$$= 60$$

වීචලන පුභවය	වර්ග ඓකාය	සුචලන අංකය	මධානතාය වර්ග ඓකායය	F අගය	
නියැදි අතර	SSC = 40	K - 1 = 2	MSC = 40/2 = 20	F = 20/5	
නියැදි තුළ	SSE = 60	N - K = 12	MSE = 60/12 = 5	=4	
එකතුව	SST = 100	N-1 = 14			

පරීක්ෂාව : $\alpha=0.05$

තීරණ නීතිය

 $F_{\mbox{\tiny cal}} \geq F_{\mbox{\tiny tab}}$ විට $H_{\mbox{\tiny o}}$ පුතික්ෂේප කරයි.

තීරණය : 4>3.89 බැවින් $H_{_0}$ පුතික්ෂේප කරයි. එනම් පරීක්ෂා සංඛාහතිය අවධි පෙදෙසෙහි පවතින බැවින් $H_{_0}$ පුතික්ෂේප කරයි.

නිගමනය : යන්තු තුනෙහිම නිමැවුම් මට්ටම සමාන වේ යයි පිළිගැනීමට 0.05 මට්ටමේදී පුමාණවත් සාක්ෂි නොපවතී.

(iii)
$$(\overline{x}_2 - \overline{x}_3) \pm Z_{\alpha/2} \sqrt{\frac{\sigma^2_2 + \sigma^2_3}{n_3}}$$

$$= (6 - 10) \pm 1.96 \sqrt{\frac{5}{5} + \frac{5}{5}}$$

$$= -4 \pm 1.96 \sqrt{2}$$

$$= -4 \pm 1.96 \times 1.41$$

$$= -4 \pm 2.76$$

$$= (-6.76, -1.24)$$

(ලකුණු 07යි)