G.C.E. (A/L) Examination - 2019

02 - Chemistry (New Syllabus)

Distribution of Marks

Paper I :

1 X 50 = 50

Paper II :

Part A : 100 X 4 = 400

Part B : 150 X 2 = 300

Part C : 150 X 2 = 300

Total = 1000

Paper II - Final Marks = 100
Common Techniques of Marking Answer Scripts.

It is compulsory to adhere to the following standard method in marking answer scripts and entering marks into the mark sheets.

1. Use a red color ball point pen for marking. (Only Chief/Additional Chief Examiner may use a mauve color pen.)

2. Note down Examiner’s Code Number and initials on the front page of each answer script.

3. Write off any numerals written wrong with a clear single line and authenticate the alterations with Examiner’s initials.

4. Write down marks of each subsection in a △ and write the final marks of each question as a rational number in a □ with the question number. Use the column assigned for Examiners to write down marks.

Example: Question No. 03

(i) .. √
.. 4/5
..

(ii) .. √
.. 3/5
..

(iii) .. √
.. 3/5
..

03 (i) \[\frac{4}{5} \] + (ii) \[\frac{3}{5} \] + (iii) \[\frac{3}{5} \] = \[\frac{10}{15} \]

MCQ answer scripts: (Template)

1. Marking templates for G.C.E.(A/L) and GIT examination will be provided by the Department of Examinations itself. Marking examiners bear the responsibility of using correctly prepared and certified templates.

2. Then, check the answer scripts carefully. If there are more than one or no answers Marked to a certain question write off the options with a line. Sometimes candidates may have erased an option marked previously and selected another option. In such occasions, if the erasure is not clear write off those options too.

3. Place the template on the answer script correctly. Mark the right answers with a ‘√’ and the wrong answers with a ‘X’ against the options column. Write down the number of correct answers inside the cage given under each column. Then, add those numbers and write the number of correct answers in the relevant cage.
structured essay type and assay type answer scripts:

1. Cross off any pages left blank by candidates. Underline wrong or unsuitable answers. Show areas where marks can be offered with check marks.

2. Use the right margin of the overland paper to write down the marks.

3. Write down the marks given for each question against the question number in the relevant cage on the front page in two digits. Selection of questions should be in accordance with the instructions given in the question paper. Mark all answers and transfer the marks to the front page, and write off answers with lower marks if extra questions have been answered against instructions.

4. Add the total carefully and write in the relevant cage on the front page. Turn pages of answer script and add all the marks given for all answers again. Check whether that total tallies with the total marks written on the front page.

Preparation of Mark Sheets.

Except for the subjects with a single question paper, final marks of two papers will not be calculated within the evaluation board this time. Therefore, add separate mark sheets for each of the question paper. Write paper 01 marks in the paper 01 column of the mark sheet and write them in words too. Write paper II Marks in the paper II Column and write the relevant details. For the subject 51 Art, marks for Papers 01, 02 and 03 should be entered numerically in the mark sheets.
Instructions:

* Periodic Table is provided.
* This paper consists of 09 pages.
* Answer all the questions.
* Use of calculators is not allowed.
* Write your Index Number in the space provided in the answer sheet.
* Follow the instructions given on the back of the answer sheet carefully.
* In each of the questions 1 to 50, pick one of the alternatives from (1), (2), (3), (4), (5) which is correct or most appropriate and mark your response on the answer sheet with a cross (x) in accordance with the instructions given on the back of the answer sheet.

Universal gas constant \(R = 8.314 \, \text{J} \, \text{K}^{-1} \, \text{mol}^{-1} \)
Avogadro constant \(N_A = 6.022 \times 10^{23} \, \text{mol}^{-1} \)
Planck’s constant \(h = 6.626 \times 10^{-27} \, \text{J} \, \text{s} \)
Velocity of light \(c = 3 \times 10^8 \, \text{m} \, \text{s}^{-1} \)

1. Consider the following statements, I and II.
 I. The energy absorbed or released by atoms is quantized.
 II. Small particles under appropriate conditions show wave properties.
 The two scientists who proposed the theories as given by statements I and II respectively are,
 (1) Louis de Broglie and Albert Einstein
 (2) Max Planck and Louis de Broglie
 (3) Max Planck and Ernest Rutherford
 (4) Niels Bohr and Louis de Broglie
 (5) Louis de Broglie and Max Planck

2. The maximum number of electron pairs of an atom that are associated with principal quantum number \(n = 3 \) is,
 (1) 3
 (2) 4
 (3) 5
 (4) 8
 (5) 9

3. The number of stable resonance structures that can be drawn for the oxalate ion \(\left[\text{C}_2\text{O}_4^{2-}/\left(\text{O}_2\text{C}–\text{CO}_2\right)^{2-} \right] \) is,
 (1) 2
 (2) 3
 (3) 4
 (4) 5
 (5) 6

4. What is the IUPAC name of the following compound?

\[
\text{HOCH}_2\text{CH}_2\text{CH}_2\text{C}_2\text{H}_4\text{NH}_2
\]

(1) 5-hydroxy-2-oxo-1-pentanamine
(2) 1-amino-5-hydroxy-2-oxopentane
(3) 1-amino-5-hydroxy-2-pentanone
(4) 5-hydroxy-1-amino-2-pentanone
(5) 5-amino-4-oxo-1-pentanol

5. Identify the pair of elements which has the largest difference in electronegativities.

(1) B and Al
(2) Be and Al
(3) B and Si
(4) B and C
(5) Al and C
6. The electron pair geometry and shape around the two nitrogen atoms (labelled as N¹ and N²) in the H₂NNO molecule (skeleton: H—N¹—N²—O) respectively are,

<table>
<thead>
<tr>
<th></th>
<th>N¹</th>
<th>N²</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>tetrahedral</td>
<td>trigonal planar</td>
</tr>
<tr>
<td>(2)</td>
<td>pyramidal</td>
<td>trigonal planar</td>
</tr>
<tr>
<td>(3)</td>
<td>trigonal planar</td>
<td>trigonal planar</td>
</tr>
<tr>
<td>(4)</td>
<td>tetrahedral</td>
<td>angular</td>
</tr>
<tr>
<td>(5)</td>
<td>tetrahedral</td>
<td>trigonal planar</td>
</tr>
</tbody>
</table>

7. Which of the following statements is incorrect regarding benzene?
 (1) The resonance hybrid of benzene is depicted as follows:

 ![Diagram of benzene resonance hybrid]

 (2) All six carbon atoms of benzene are sp² hybridized.
 (3) The bond lengths between any two carbon atoms of benzene have the same value.
 (4) All the C—C—C and the C—C—H bond angles of benzene have the same value.
 (5) All the hydrogen atoms of benzene lie in the same plane.

8. TiCl₄(g) reacts with liquid magnesium metal (Mg(l)) to give Ti(s) metal and MgCl₂(l) at high temperature. When 0.95 kg of TiCl₄(g) is made to react with 97.2 g of Mg(l), the reactant that is completely consumed (this is commonly referred to as the limiting reactant) and the amount of Ti(s) metal formed respectively are, (Molar mass: TiCl₄ = 190 g mol⁻¹; Mg = 24.3 g mol⁻¹; Ti = 48 g mol⁻¹)
 (1) TiCl₄ and 96 g
 (2) Mg and 96 g
 (3) Mg and 48 g
 (4) TiCl₄ and 192 g
 (5) Mg and 192 g

9. The ideal gas equation can be expressed in the form, \(P = \frac{\rho RT}{M} \) where \(\rho \) is the density of the gas, \(M \) is the molar mass (g mol⁻¹) of the gas, \(P \) is the pressure (Pa) and \(T \) is the temperature (K). If the units of \(R \) are J mol⁻¹ K⁻¹, units of \(\rho \) in this equation should be,
 (1) kg m⁻³
 (2) g m⁻³
 (3) g cm⁻³
 (4) g dm⁻³
 (5) kg cm⁻³

10. The decreasing order of conductivity of the following aqueous solutions including H₂O is,
 0.01 M KCl, 0.1 M KCl, 0.1 M HAC; (HAC = acetic acid; \(M = \text{mol dm}^{-3} \))
 (1) H₂O > 0.1 M HAC > 0.1 M KCl > 0.01 M KCl
 (2) 0.01 M KCl > 0.1 M HAC > 0.1 M KCl > H₂O
 (3) 0.01 M KCl > 0.1 M KCl > 0.1 M HAC > H₂O
 (4) 0.1 M KCl > 0.01 M KCl > 0.1 M HAC > H₂O
 (5) 0.1 M HAC > H₂O > 0.01 M KCl > 0.1 M KCl

11. The correct answer when the chemical species SO₂, SO₃, SO₃²⁻, SO₄²⁻ and SCl₂ are arranged in the increasing order of the electronegativity of sulphur (S) atom is,
 (1) SCl₂ < SO₃²⁻ < SO₂ < SO₃ < SO₄²⁻
 (2) SO₃ < SO₄²⁻ < SO₂ < SO₃²⁻ < SCl₂
 (3) SO₃²⁻ < SO₂ < SCl₂ < SO₃ < SO₂
 (4) SCl₂ < SO₃²⁻ < SO₄²⁻ < SO₂ < SO₃
 (5) SCl₂ < SO₄²⁻ < SO₃²⁻ < SO₂ < SO₃
12. Which of the following answers gives the maximum hydroxide concentration that can exist in a 1.775 mol dm\(^{-3}\) aqueous solution of MgCl\(_2\) at 25°C? At this temperature, solubility product of Mg(OH)\(_2\) is \(7.1 \times 10^{-12}\) mol dm\(^{-3}\).
 (1) \(4.0 \times 10^{-6}\) mol dm\(^{-3}\)
 (2) \(2.0 \times 10^{-6}\) mol dm\(^{-3}\)
 (3) \(1.775 \times 10^{-12}\) mol dm\(^{-3}\)
 (4) \(\sqrt{7.1} \times 10^{-6}\) mol dm\(^{-3}\)
 (5) \(1.0 \times 10^{-6}\) mol dm\(^{-3}\)

13. What is the major product of the following reaction?

 \[
 \text{HO-CH}_2\text{OH} \xrightarrow{\text{excessaq.NaOH}} \text{CO}_2\text{Na}^+ \quad \text{Na}^+\text{O-CH}_2\text{O-Na}^+ \\
 \text{Na}^+\text{O-CH}_2\text{OH} \quad \text{Na}^+\text{O-CH}_2\text{O-Na}^+ \\
 \text{HO-CH}_2\text{OH} \quad \text{CO}_2\text{H} \\

 (1) \text{CO}_2\text{Na}^+ \\
 (2) \text{CO}_2\text{Na}^+ \\
 (3) \text{CO}_2\text{Na}^+ \\
 (4) \text{CO}_2\text{Na}^+ \\
 (5) \text{CO}_2\text{Na}^+ \\

14. Identify the correct statement from the following.
 (1) The bond angle of NF\(_3\) is larger than the bond angle of NH\(_3\).
 (2) Elements in group 17 (or 7A) exhibit oxidation states from \(-1\) to \(+7\).
 (3) Monoclinic sulphur is the most stable allotrope of sulphur at room temperature.
 (4) The density of graphite is higher than the density of diamond.
 (5) Aluminium chloride satisfies the octet rule in the gaseous state.

15. The standard electromotive force of the electrochemical cell \(\text{Mn(s)} | \text{Mn}^{2+}(\text{aq}) \ || \text{Br}^-(\text{aq}) | \text{Br}_2(g) | \text{Pt(s)}\) is 2.27 V. The standard reduction potential of \(\text{Br}_2(g) | \text{Br}^-(\text{aq})\) is 1.09 V. The standard reduction potential of \(\text{Mn}^{2+}(\text{aq}) | \text{Mn(s)}\) is,
 (1) \(-3.36\) V
 (2) \(-1.18\) V
 (3) \(0.59\) V
 (4) \(1.18\) V
 (5) \(3.36\) V

16. The enthalpy change of vaporization and the entropy change of vaporization of a liquid are, 45.00 kJ mol\(^{-1}\) and 90.0 J K\(^{-1}\) mol\(^{-1}\) respectively. The boiling point of the liquid is,
 (1) 45.0 °C
 (2) 62.7 °C
 (3) 100.0 °C
 (4) 135.0 °C
 (5) 227.0 °C

17. What is the incorrect statement about \(\text{C}_6\text{H}_5\text{N}^+\text{≡NCl}^-\)?
 (1) \(\text{C}_6\text{H}_5\text{N}^+\text{≡NCl}^-\) can be obtained by reacting aniline with HNO\(_2\) (NaNO\(_2\)/HCl) at 0 – 5°C.
 (2) \(\text{C}_6\text{H}_5\text{N}^+\text{≡NCl}^-\) reacts with KI to give iodobenzene.
 (3) The \(\text{C}_6\text{H}_5\text{N}^+\text{≡N}\) ion can act as an electrophile.
 (4) When an aqueous solution of \(\text{C}_6\text{H}_5\text{N}^+\text{≡NCl}^-\) is heated, it decomposes to give benzene.
 (5) \(\text{C}_6\text{H}_5\text{N}^+\text{≡NCl}^-\) reacts with phenols in a basic medium to give coloured compounds.

18. \(\text{H}_2\text{S}(g)\) reacts with \(\text{O}_2(g)\) to give only water vapour (\(\text{H}_2\text{O(g)}\)) and \(\text{SO}_2(g)\), as products. When 4 dm\(^3\) of \(\text{H}_2\text{S}(g)\) reacts with 10 dm\(^3\) of \(\text{O}_2(g)\) at a constant pressure and 250°C, the final volume of the mixture is,
 (1) 6 dm\(^3\)
 (2) 8 dm\(^3\)
 (3) 10 dm\(^3\)
 (4) 12 dm\(^3\)
 (5) 14 dm\(^3\)
19. A mixture of A(g) and D(g) was introduced in to a rigid evacuated container at the temperature \(T \). At this temperature, both A(g) and D(g) decompose according to the elementary reactions given below.

\[
2A(g) \rightarrow B(g) + 3C(g); \text{ rate constant } k_1 \\
D(g) \rightarrow B(g) + 2C(g)
\]

The initial pressure of the container \(P \), changed to 2.7 \(P \) after the complete decomposition of both reactants. The initial rate of decomposition of A(g) at this temperature is, \((R \) is the universal gas constant) \[
\begin{align*}
(1) & \quad 1.7k_1 \left(\frac{P}{RT} \right) \\
(2) & \quad 2.7k_1 \left(\frac{P}{RT} \right) \\
(3) & \quad 0.09k_1 \left(\frac{P}{RT} \right)^2 \\
(4) & \quad 2.89k_1 \left(\frac{P}{RT} \right)^2 \\
(5) & \quad 7.29k_1 \left(\frac{P}{RT} \right)^2
\end{align*}
\]

20. An organic compound (X) decolourizes bromine water \((\text{Br}_2/\text{H}_2\text{O}) \). X does not give a precipitate with ammoniacal \(\text{CuCl}_2 \). When X is treated with an acidic \(\text{K}_2\text{Cr}_2\text{O}_7 \) solution, a green coloured solution is obtained. X could be:

\[
\begin{align*}
(1) & \quad \text{CH}_3\text{CH}_2\text{C}≡\text{C}−\text{H} \\
(2) & \quad \text{CH}_3\text{CCH}_2\text{C}≡\text{C}−\text{CH}_3 \\
(3) & \quad \text{CH}_3\text{CHCH}_2\text{CH}≡\text{CHCH}_3 \\
(4) & \quad \text{HOCH}_2\text{CHC}≡\text{C}−\text{H} \\
(5) & \quad \text{CH}_3\text{CHCH}_2\text{CH}_2\text{CH}_2\text{CH}_3
\end{align*}
\]

21. A buffer solution of pH 5.0 was prepared by mixing equal volumes of a 0.10 mol dm\(^{-3}\) monobasic weak acid solution and a 0.10 mol dm\(^{-3}\) solution of the sodium salt of this acid. The pH of the resultant solution, when 20.00 cm\(^3\) of this buffer solution was mixed with 90.00 cm\(^3\) of 0.10 mol dm\(^{-3}\) weak acid solution, is,

\[
\begin{align*}
(1) & \quad 3.0 \\
(2) & \quad 4.0 \\
(3) & \quad 4.5 \\
(4) & \quad 5.5 \\
(5) & \quad 6.0
\end{align*}
\]

22. Consider the following three aqueous solutions.

\(\text{P} \) - a weak acid,

\(\text{Q} \) - an equimolar mixture of the weak acid and its sodium salt,

\(\text{R} \) - titration mixture at the equivalence point of the titration of the weak acid and a strong base

When each solution is diluted by the same amount at constant temperature, the pH of \(\text{P} \), \(\text{Q} \) and \(\text{R} \) respectively, will

(1) decrease, increase, not change. (2) increase, not change, decrease.
(3) increase, not change, not change. (4) increase, not change, increase.
(5) increase, increase, increase.

23. The incorrect statement with regard to the oxoacids of chlorine HOCI, HClO\(_2\), HClO\(_3\) and HClO\(_4\) is,

(1) The shapes around chlorine in HClO\(_2\), HClO\(_3\) and HClO\(_4\) respectively are angular, pyramidal and tetrahedral.
(2) The oxidation states of chlorine in HOCI, HClO\(_2\), HClO\(_3\) and HClO\(_4\) respectively are +1, +3, +5 and +7.
(3) The acid strength of the oxoacids varies as HOCI < HClO\(_2\) < HClO\(_3\) < HClO\(_4\).
(4) All these oxoacids contain at least one double bond.
(5) All these oxoacids contain at least one OH group.

24. The density of an aqueous acidic solution at 25 °C is 1.0 kg dm\(^{-3}\). If the pH of this solution is 1.0, its H\(^+\) concentration in ppm would be,

\[
\begin{align*}
(1) & \quad 0.1 \\
(2) & \quad 1 \\
(3) & \quad 100 \\
(4) & \quad 1000 \\
(5) & \quad 10,000
\end{align*}
\]
25. A 25.0 g sample of polluted air containing ozone (O_3) is treated with an acidic solution containing excess KI. Ozone is converted to O_2 and H_2O during this reaction. The iodine liberated is titrated with 0.002 mol dm$^{-3}$ Na$_2$S$_2$O$_3$ solution. Volume of Na$_2$S$_2$O$_3$ required was 25.0 cm3. The mass percent of O_3 in the air sample is, (O = 16)

(1) 4.8×10^{-3} " (2) 6.4×10^{-3} " (3) 9.6×10^{-3} " (4) 1.0×10^{-2} " (5) 3.2×10^{-2}

26. Which of the following reaction steps is not present in the Born-Haber cycle of NaCl(s) formation?

(1) Na$^+$aq + Cl$^-$aq \rightarrow NaCl(aq) " (2) Na(s) \rightarrow Na(g) " (3) Cl$_2$(g) \rightarrow 2Cl(g)
(4) Cl(g) + e \rightarrow Cl$^-$(g) " (5) Na$^+$aq + Cl$^-$(aq) \rightarrow NaCl(s)

27. Activation energy of the elementary reaction $A(g) + B(g) \rightarrow C(g)$ is E_a. This reaction is catalysed by the metal M. The energy diagram of the catalysed reaction is given below.

Which of the following is always correct with regard to this reaction?
(1) $E_a < E_1$ " (2) $E_a = E_1 + E_2 + E_3 - \Delta H_1$ " (3) $E_a < E_1$, $E_a < E_2$ and $E_a < E_3$
(4) $E_a > E_1 + E_2$ " (5) $E_a > \Delta H_1 + E_2$

28. For a weak acid, it can be given that $F = \frac{\text{Amount of the acid dissociated}}{\text{Amount of the acid undissociated}}$

Which of the following graphs shows the relationship between Log F and pH?

29. Which of the following statements with regard to polymers is correct?

(1) Nylon is an addition polymer.
(2) Teflon is a condensation polymer.
(3) Bakelite is a linear polymer.
(4) The number of carbon atoms in the repeating unit of natural rubber is 4.
(5) Small covalent molecules are eliminated when monomers combine to form condensation polymers.

30. Two ideal gases that do not react with each other are separated by a valve and kept in a rigid container. This system is maintained at constant temperature and pressure. Which of the following correctly describes the change in Gibbs energy, enthalpy and entropy of the system respectively when the valve is opened?

(1) decreased, decreased, decreased " (2) decreased, decreased, increased
(3) decreased, unchanged, increased " (4) decreased, increased, increased
(5) increased, increased, increased
• For each of the questions 31 to 40, one or more responses out of the four responses (a), (b), (c) and (d) given is/are correct. Select the correct response/responses. In accordance with the instructions given on your answer sheet, mark
 (1) if only (a) and (b) are correct.
 (2) if only (b) and (c) are correct.
 (3) if only (c) and (d) are correct.
 (4) if only (d) and (a) are correct.
 (5) if any other number or combination of responses is correct.

Summary of above Instructions

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only (a) and (b) are correct</td>
<td>Only (b) and (c) are correct</td>
<td>Only (c) and (d) are correct</td>
<td>Only (d) and (a) are correct</td>
<td>Any other number or combination of responses is correct</td>
</tr>
</tbody>
</table>

31. Which of the following statement/statements is/are correct with regard to simple covalent molecules containing oxygen and sulphur atoms?
 (a) H₂O shows amphoteric properties.
 (b) The boiling point of H₂O₂ is higher than the boiling point of H₂O.
 (c) H₂O₂ can act as an oxidizing agent only in an acidic medium.
 (d) Both H₂S and SO₂ have the capacity to act only as reducing agents.

32. Which of the following statement/statements is/are correct with regard to hydrocarbons?
 (a) All hydrocarbons give CO₂ and H₂O when completely reacted with excess O₂.
 (b) All alkynes react with Grignard reagents to give alkynylmagnesium halides.
 (c) The boiling point of a branched alkane is higher than the boiling point of an unbranched alkane with the same relative molecular mass.
 (d) None of the hydrocarbons react with aqueous NaOH.

33. If an endothermic reaction occurs spontaneously at constant temperature and pressure, then,
 (a) enthalpy of the system decreases. (b) entropy of the system increases.
 (c) enthalpy of the system increases. (d) entropy of the system does not change.

34. Which of the following statement/statements is/are correct regarding the precipitation of metal ions by passing H₂S(g) in to their aqueous solutions?
 (a) When the pressure of H₂S(g) is decreased, the sulphide ion concentration is increased.
 (b) When the temperature is increased, the sulphide ion concentration is decreased.
 (c) Addition of Na₂S(s) to the solution, decreases the dissociation of dissolved H₂S(aq).
 (d) Increase in pH of the solution decreases sulphide ion concentration.

35. Which of the following is/are nucleophilic substitution reaction/reactions?

(a) \[\text{O} \quad \text{CH}_3\text{C-\text{H}} + \text{HCN} \rightarrow \text{CH}_3\text{CHCN} \]
(b) \[\text{CH}_3\text{CH}_2\text{OH} + \text{PCl}_3 \rightarrow \text{CH}_3\text{CH}_2\text{Cl} \]
(c) \[\text{CH}_2\text{CHCl} + \text{NaOH} \rightarrow \text{CH}_3\text{CHOH} \]
(d) \[\text{CH}_3\text{CHCH}_3 + \text{Cl}_2 \xrightarrow{\text{hv}} \text{CH}_3\text{CH}_2\text{Cl} \]

36. Which of the following statement/statements is/are correct regarding the elevation of carbon dioxide level in the atmosphere?
 (a) It contributes to the increase in acidity of sea water.
 (b) It reduces the hardness of water bodies.
 (c) It strongly absorbs UV radiation coming from the sun.
 (d) It does not contribute to acid rain.

37. Which of the following statement/statements is/are correct with regard to 3d-block elements?
 (a) Zn has the highest first ionization energy among the 3d-block elements.
 (b) In contrast to the ions of most main group elements (s and p-block), 3d-block metal ions rarely attain the noble gas configuration.
 (c) Although the electronegativities of 3d-block elements are higher than the electronegativities of the corresponding s-block elements, their atomic radii are smaller than the atomic radii of the corresponding s-block elements.
 (d) The 3d-block elements that form colourless compounds are Ti and Zn.

38. Volatile liquids A and B having saturated vapour pressures \(P_A \) and \(P_B \) \((P_A = P_B) \) form an ideal solution. A mixture of the liquids A and B is in equilibrium with their vapour phase, in a closed container. When the volume of the container is increased and the equilibrium is re-established at the same temperature, which of the following statement/statements is/are correct?
 (a) While some amount of A and B go to the gas phase, the composition of the liquid phase remains unchanged.
 (b) While some amount of A and B go to the gas phase, the composition of the gas phase remains unchanged.
 (c) While some amount of A and B go to the gas phase, the composition of the liquid phase changes.
 (d) While some amount of A and B go to the gas phase, the composition of the gas phase changes.

39. Which of the following statement/statements is/are correct regarding an aqueous solution of a weak acid?
 (a) Conductivity of the solution increases as the concentration of the weak acid decreases.
 (b) Conductivity of the solution increases as the temperature increases.
 (c) Conductivity of the solution decreases but the fraction dissociated of the weak acid increases as more water is added to the solution.
 (d) When NaCl(s) is dissolved in the weak acid solution, conductivity decreases.

40. Which of the following statement/statements regarding compound A is/are correct?

 \[
 \text{CH}_3\text{CH} = \text{C} \begin{array}{c}\text{CH}_2\text{COCH}_3 \\
 \text{CH}_2\text{CHOHCH}_3
 \end{array}
 \]

 (a) A exhibits geometric isomerism.
 (b) A does not exhibit optical isomerism.
 (c) The product obtained when A is reacted with pyridinium chlorochromate (PCC) exhibits optical isomerism.
 (d) The product obtained when A is reacted with pyridinium chlorochromate does not exhibit geometric isomerism.
In question Nos. 41 to 50, two statements are given in respect of each question. From the Table given below, select the response, out of the responses (1), (2), (3), (4) and (5), that best fits the two statements and mark appropriately on your answer sheet.

<table>
<thead>
<tr>
<th>Response</th>
<th>First Statement</th>
<th>Second Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>True</td>
<td>True, and correctly explains the first statement</td>
</tr>
<tr>
<td>(2)</td>
<td>True</td>
<td>True, but does not explain the first statement correctly</td>
</tr>
<tr>
<td>(3)</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>(4)</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>(5)</td>
<td>False</td>
<td>False</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First Statement</th>
<th>Second Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>41. Among the halogens, I₂ is a solid whereas Br₂ is a liquid.</td>
<td>London forces become stronger with increase in molecular surface area.</td>
</tr>
<tr>
<td>42. At a given pressure, the spontaneity of the reaction between N₂ and H₂ to give NH₃ drops with increasing temperature.</td>
<td>Entropy change of the reaction between N₂ and H₂ to give NH₃ is negative.</td>
</tr>
<tr>
<td>43. Essential oils are generally extracted from plant materials by steam distillation.</td>
<td>Essential oils have a high solubility in water.</td>
</tr>
<tr>
<td>44. A spontaneous reaction always has a negative Gibbs energy change no matter what the conditions are.</td>
<td>Gibbs energy change can be used to predict the direction of a reaction only under constant temperature and constant pressure conditions.</td>
</tr>
<tr>
<td>45. Solubility of 1-butanol in water is less than the solubility of methanol in water.</td>
<td>The solubility of alcohols in water decreases as the size of the non-polar alkyl group increases relative to the polar OH group.</td>
</tr>
<tr>
<td>46. The reaction, (\text{CH}_3-\text{CH}≡\text{CH}_2 \rightarrow \text{CH}_3-\text{CH}-\text{CH}_3) is a nucleophilic addition reaction.</td>
<td>A secondary carbocation is formed as a reaction intermediate in the following reaction.</td>
</tr>
<tr>
<td>47. Coke is used in several industrial processes.</td>
<td>Coke is only used industrially as a fuel.</td>
</tr>
<tr>
<td>48. The carbonyl carbon atom of a ketone and the other atoms bonded to it lie in the same plane.</td>
<td>The carbonyl carbon atom of a ketone is (\text{sp}^2) hybridized.</td>
</tr>
<tr>
<td>49. Any two ideal gases have the same average kinetic energies at the same temperature.</td>
<td>At a given temperature, the average speed of gas molecules adjust according to their masses.</td>
</tr>
<tr>
<td>50. Although CFC contribute to ozone layer depletion, the contribution from HFC is negligible.</td>
<td>HFC undergoes complete decomposition before reaching the upper atmosphere.</td>
</tr>
</tbody>
</table>
G.C.E. (A/L) Examination 2019
Chemistry

New Syllabus l G.C.E. (A/L) Examination 2019
Amendments to be included.

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Notes:
- **01** Paper I/II: All candidates are required to answer all questions.
- **02** Paper I/II: Choose any five questions to answer.
- **03** Paper I/II: Choose any four questions to answer.
- **04** Paper I/II: Choose any two questions to answer.
- **05** Paper I/II: Choose any three questions to answer.
- **06** Paper I/II: Choose any two questions to answer.
- **07** Paper I/II: Choose any three questions to answer.
- **08** Paper I/II: Choose any two questions to answer.
- **09** Paper I/II: Choose any two questions to answer.
- **10** Paper I/II: Choose any three questions to answer.

Total Marks: 1 x 50 = 50
PART A — STRUCTURED ESSAY

Answer all four questions on this paper itself. (Each question carries 100 marks.)

1. (a) The following questions are related to the elements of the second row in the Periodic Table. Write the symbol of the element in the space provided in answering parts (i) to (vi).

 (i) Identify the element that has the highest electronegativity (disregard the noble gas).

 F
 C
 N
 Be
 Ne
 B

 Note: If name is given instead of symbols do not award marks

 (04 X 6 = 24)

 1(a): 24 marks

 (b) (i) Draw the most acceptable Lewis dot-dash structure for the molecule SO_3F_2. Its skeleton is given below.

 (06)

 (ii) The most stable Lewis dot-dash structure for the molecule $\text{H}_2\text{N}_2\text{O}$ is shown below. Draw two more Lewis dot-dash structures (resonance structures) for this molecule. Write ‘unstable’ under the more unstable structure drawn by you.

 (04)

 (04)

 (02)

 (iii) Based on the Lewis dot-dash structure given below, state the following regarding the C, N and O atoms given in the table.

 I. VSEPR pairs around the atom
 II. electron pair geometry around the atom
 III. shape around the atom
 IV. hybridization of the atom

 The atoms are numbered as follows.

 O^1 N^2 C^3 N^4

<table>
<thead>
<tr>
<th></th>
<th>VSEPR pairs</th>
<th>O¹</th>
<th>N²</th>
<th>C³</th>
<th>N⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>VSEPR pairs</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>II</td>
<td>electron pair geometry</td>
<td>tetrahedral</td>
<td>trigonal planar</td>
<td>linear</td>
<td>trigonal planar</td>
</tr>
<tr>
<td>III</td>
<td>shape</td>
<td>angular / V</td>
<td>angular / V</td>
<td>linear</td>
<td>trigonal planar</td>
</tr>
<tr>
<td>IV</td>
<td>hybridization</td>
<td>sp^3</td>
<td>sp^2</td>
<td>sp</td>
<td>sp^2</td>
</tr>
</tbody>
</table>

 (01 X 16 = 16)
(iv) Identify the atomic/hybrid orbitals involved in the formation of the following \(\sigma \) bonds in the Lewis dot-dash structure given in part (iii) above. (Numbering of atoms is as in part (iii).)

I. \(F-O^1 \) \(2p \) OR \(sp^3 \) \(O^1 \) \(sp^3 \)
II. \(O^1-N^2 \) \(sp^3 \) \(N^2 \) \(sp^2 \)
III. \(N^2-C^3 \) \(sp^2 \) \(C^3 \) \(sp \)
IV. \(C^3-N^4 \) \(sp \) \(N^4 \) \(sp^2 \)
V. \(N^4-O^5 \) \(sp^2 \) \(O^5 \) \(2p \) OR \(sp^3 \)
VI. \(N^4-Cl \) \(sp^2 \) \(Cl \) \(3p \) OR \(sp^3 \)

\((01 \times 12 = 12) \)

(v) Identify the atomic orbitals involved in the formation of the following \(\pi \) bonds in the Lewis dot-dash structure given in part (iii) above. (Numbering of atoms is as in part (iii).)

I. \(N^2-C^3 \) \(2p \) \(C^3 \) \(2p \)
II. \(C^3-N^4 \) \(2p \) \(N^4 \) \(2p \)

\((01 \times 4 = 04) \)

(vi) I. How are the two double bonds oriented in the Lewis dot-dash structure given in part (iii)?

- Double bonds are perpendicular to each other
- Sigma bonds linear, \(\pi \) bonds perpendicular

\((02) \)

OR

\((01 + 01) \)

II. Give an example of a molecule/ion that has a similar orientation of double bonds.

\[CO_2, NO_2^+, CN_2^-, N_3^- \]

\((02) \)

Note: Your example should not contain more than 3 atoms.
The elements in your example should be restricted to the first and second periods of the Periodic Table.

1(b): 52 marks

(c) (i) An atomic orbital is described by three quantum numbers \(n \), \(l \) and \(m_l \).

Write the appropriate quantum numbers and the name of the atomic orbital in the boxes given below.

\[
\begin{array}{cccc}
 n & l & m_l & \text{atomic orbital} \\
 I. & 3 & 1 & +1 & 3p \\
 II. & 3 & 2 & -2 & 3d \\
 III & 2 & 0 & 0 & 2s \\
\end{array}
\]

\((01 \times 6 = 06) \)

(ii) Arrange the following in the increasing order of the property indicated in parenthesis.
(Reasons are not required.)

I. LiF, LiI, KF (melting point)

\[\text{LiI} < \text{LiF} < \text{KF} \]

II. \(NO_2^- \), \(NO_3^- \), \(NF_5 \) (stability)

\[\text{NF}_5 < \text{NO}_3^- < \text{NO}_2^- \]

III. \(NOCl \), \(NOCl_3 \), \(NO_2F \) (N—O bond distance)

\[\text{NOCl} < \text{NO}_2F < \text{NOCl}_3 \]

\((06 \times 3 = 18) \)

1(c): 24 marks
2. (a) X is an s-block element in the Periodic Table. The first, second and third ionization energies of X, in kJ mol\(^{-1}\) are 738, 1451 and 7733 respectively. X reacts slowly with hot water, liberating H\(_2\)(g) and forming its hydroxide. The hydroxide is basic. X also liberates H\(_2\)O(g) on reaction with dilute acids. X burns in air with a bright white light. The cation of X contributes to hardness of water.

(i) Identify X. X: Mg OR Magnesium (07)

(ii) Write the ground state electronic configuration of X. \(1s^22s^22p^63s^2\) (04)

(iii) Write the chemical formulae of the two compounds formed when X burns in air.

\[
\text{MgO} \quad \text{and} \quad \text{Mg}_3\text{N}_2
\]

Note: If X has been identified correctly marks can be awarded for XO and X\(_3\)N\(_2\).

(iv) Consider the given compounds of the elements in the group in the Periodic Table to which X belongs. In the given boxes, write whether the indicated property *increases* or *decreases* down the group.

<table>
<thead>
<tr>
<th>I. Solubility of sulphates in water</th>
<th>Decreases (03)</th>
</tr>
</thead>
<tbody>
<tr>
<td>II. Solubility of hydroxides in water</td>
<td>Increases (03)</td>
</tr>
<tr>
<td>III. Thermal stability of metal carbonates</td>
<td>Increases (03)</td>
</tr>
</tbody>
</table>

Give reasons for your answer in III.

- Cation size increases down the group. Charge same. (03)
- Charge density decreases down the group. (03)
- Therefore, polarizing power decreases down the group. (02)
- Hence, decomposition of the carbonates become difficult on going down the group. (03)

(v) Identify the element in the s-block of the Periodic Table, which reacts in a similar manner to X with H\(_2\)O(g), O\(_2\)(g) and N\(_2\)(g), but does not belong to the same group as X.

Lithium OR Li (04)

(vi) Identify another *metal ion* that contributes to hardness of water.

Ca\(^{2+}\) (No marks for Ca OR Calcium) (04)

(vii) Identify the compound most commonly used to remove hardness of water.

Na\(_2\)CO\(_3\) OR Soda Ash (04)

(viii) X is a component of a well-known reagent used in organic chemistry. Give the *name* of this reagent.

Grignard reagent (04)

Note: If X is incorrect, do not award marks for (a)(ii) – (iv).

2(a): 50 marks
(b) Test tubes labelled A to E contain aqueous solutions of Na₂SO₃, Na₂CO₃, KNO₂, KBr and Na₂S (not in order). The characteristics of the solutions obtained and gases evolved on addition of dil HCl (warming if required) to each of the test-tubes A to E are given in the table below.

<table>
<thead>
<tr>
<th>Test-tube</th>
<th>Appearance of solution</th>
<th>Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>colourless</td>
<td>colourless and odourless</td>
</tr>
<tr>
<td>B</td>
<td>colourless</td>
<td>reddish-brown with a pungent odour</td>
</tr>
<tr>
<td>C</td>
<td>colourless</td>
<td>colourless with a rotten egg odour</td>
</tr>
<tr>
<td>D</td>
<td>turbid</td>
<td>colourless with a pungent odour</td>
</tr>
<tr>
<td>E</td>
<td>colourless</td>
<td>not evolved</td>
</tr>
</tbody>
</table>

(i) Identify the solutions in each of the test-tubes A to E.

A : ...Na₂CO₃ C : ...Na₂S E : KBr
B : ...KNO₂ D : ...Na₂S₂O₃ (04 X 5 = 20)

(ii) Write balanced chemical equations for the reactions that take place in test-tubes A, B, C and D.

In A: \[\text{Na}_2\text{CO}_3 + 2\text{HCl} \rightarrow 2\text{NaCl} + \text{H}_2\text{O} + \text{CO}_2 \]
In B: \[\text{KNO}_2 + \text{HCl} \rightarrow \text{KCl} + \text{HNO}_2 \] OR
\[2\text{KNO}_2 + 2\text{HCl} \rightarrow 2\text{KCl} + \text{NO}_2 + \text{NO} + \text{H}_2\text{O} \] OR
\[3\text{KNO}_2 + 3\text{HCl} \rightarrow 3\text{KCl} + \text{HNO}_3 + 2\text{NO} + \text{H}_2\text{O} \] OR
\[3\text{KNO}_2 + 3\text{HCl} + \text{O}_2 \rightarrow 3\text{KCl} + \text{HNO}_3 + 2\text{H}_2\text{O} + 2\text{NO}_2 \] OR
\[4\text{KNO}_2 + 4\text{HCl} + \text{O}_2 \rightarrow 4\text{KCl} + 4\text{NO}_2 + 2\text{H}_2\text{O} \]
In C: \[\text{Na}_2\text{S} + 2\text{HCl} \rightarrow 2\text{NaCl} + \text{H}_2\text{S} \]
In D: \[\text{Na}_2\text{S}_2\text{O}_3 + 2\text{HCl} \rightarrow 2\text{NaCl} + \text{SO}_2 + \text{S} + \text{H}_2\text{O} \] (04 X 4 = 16)

(iii) Write a chemical test to identify each of the gases evolved in A, C and D.

Note: Observations are also required.

In A: \((\text{CO}_2)\) Pass through a solution of Ca(OH)_2. (02)
Solution turns milky. On continued passing, milky solution becomes colourless.
In C: \((\text{H}_2\text{S})\) Test with filter paper moistened with lead acetate. (03)
Filter paper turns black.
OR Test with filter paper moistened with cadmium acetate. (02)
Filter paper turns yellow.
OR Pass through a solution of acidified KMnO₄. (03)
(Purple) solution becomes colourless, but solution is not clear (cloudy) (02)
OR Pass through a solution of acidified K₂Cr₂O₇. (03)
(Orange) solution becomes green, but solution is not clear (cloudy) (02)
In D: \((\text{SO}_2)\) Pass through a solution of acidified KMnO₄. (03)
(Purple) solution becomes colourless. (02)
OR Pass through a solution of acidified K₂Cr₂O₇. Test with filter paper moistened with acidified K₂Cr₂O₇. (03)
(Orange) solution becomes green. / Filter paper turns green. (02)
OR Pass through a solution of Ca(OH)₂. (03)
Solution turns milky. On continued passing, milky solution becomes colourless. (02)
OR Test with moist coloured flower petals. (03)
Petals are decolourized / bleached. (02)

Note: Identification in (b)(i) must be correct for award of marks for respective answers in (b)(ii) & (b)(iii).

2(b): 50 marks
(ii) Is the dissolution of MX(s) in water an endothermic or exothermic process? Explain your answer.

Dissolution of MX(s) has absorbed heat (OR temperature of water decreased) ... (2)
Process is endothermic .. (2)

(iii) Calculate the enthalpy change (in kJ mol⁻¹) associated with reaction

MX(s) + H₂O(l) → M⁺(aq) + X⁻(aq).

\[\Delta H = \frac{3360 J}{0.10 \text{ mol}} = 33.6 \text{ kJ mol}^{-1} \] (OR 33600 J mol⁻¹) ... (4+1)+(4+1)

(iv) If this experiment was conducted using 200.00 cm³ of water, would you expect the temperature change to be larger than the above value? Explain your answer.

No (OR the temperature change would be smaller) .. (2)
Amount of heat (q) is constant, the mass (m) has increased. Therefore, the temperature change (ΔT) would be smaller (OR More water is available to release heat) ... (2)

(v) Show the variation of temperature of the system (solution) by drawing the temperature – time curve.

Note: Eventually the system reaches the room temperature (25.0°C).

![Temperature - Time Curve]

(vi) In this experiment, explain why a plastic cup is used instead of a metal cup.

Metals are good thermal conductors. (OR when the temperature is decreased, metal provides and conducts heat from surroundings) ... (2)
Plastics are poor thermal conductors and have low heat capacity .. (2)

(vii) Gibbs energy change (ΔG) for the dissolution of MX(s) in water at the temperature of 25.0°C and pressure of 1.0 atm was calculated to be -26.0 kJ mol⁻¹. Calculate the entropy change (ΔS) of dissolution of MX(s) in water at 25.0°C using the enthalpy change calculated above.

\[\Delta G = \Delta H - T \Delta S \] (No marks for \(\Delta G^0 \neq \Delta H^0 - T \Delta S^0 \)) ... (5)

\[\Delta S = \frac{\Delta H - \Delta G}{T} \]

\[= \frac{33.6 \text{ kJ mol}^{-1} - (-26.0 \text{ kJ mol}^{-1})}{298 \text{ K}} \]

\[= 200 \text{ J mol}^{-1} \text{ K}^{-1} \] .. (4+1)

(viii) Would you expect the solubility of MX(s) to increase or decrease with increasing temperature? Give reasons for your answer.

Solubility of MX(s) in water increases with increasing temperature because ΔG becomes more negative. ... (4)
(OR because the dissolution of MX(s) is endothermic)
4. (a) Compounds A and B both have the same molecular formula C₅H₁₀O. Both A and B give orange/red precipitates with 2,4-dinitrophenylhydrazine. When A and B are reacted separately with NaBH₄ in methanol, compound A gives C and compound B gives D. When C is heated with Al₂O₃, two alkenes E (C₅H₁₀) and F (C₅H₁₀) are formed. When E and F are reacted separately with conc. H₂SO₄ and the products obtained are hydrolysed, compound E gives G, while compound F gives H. G gives a turbidity immediately with the Lucas reagent. H also gives a turbidity with the Lucas reagent but not immediately.

(i) Draw the structures of G and H.

![Diagram of G and H](image)

(ii) Draw the structures of A, C, E and F.

![Diagram of A, C, E, and F](image)

When heated with Al₂O₃, D gives alkene I (C₅H₁₀). When I is reacted with conc. H₂SO₄ and the product obtained hydrolysed, G is obtained.

(iii) Draw the structures of B, D and I.

![Diagram of B, D, and I](image)

Note: 1. Mark A-I independently
2. If the correct structure is given for either C or H, award full marks for both C and H (05x2 = 10)

(iv) Describe a test/reaction to distinguish between A and B.

B gives
- Tollens reagent: Silver mirror
- Fehlings solution: Red colouration
- Acidic K₂Cr₂O₇: Green colouration
- Dilute KMnO₄ solution: Decolourization

(Any one)

Note: Marks awarded only if A and B are correct.

4(a): 50 marks
(b) (i) Give the structures of J, K, L and M in the following reaction sequences.

\[
\begin{align*}
\text{J} & \xrightarrow{\text{CH}_3\text{COCl, anh. AlCl}_3} \text{CH}_3\text{C}==\text{CMeBr} & \xrightarrow{\text{H}^+ / \text{H}_2\text{O}} \text{T} & \xrightarrow{\text{H}_2 / \text{Pd}} \text{BaSO}_4 / \text{Quinoline} & \text{L} \\
\text{J} & \xrightarrow{\text{CH}_3\text{C}==\text{CMgBr}} \text{K} & \xrightarrow{\text{H}^+ / \text{H}_2\text{O}} \text{L} \\
\end{align*}
\]

\[
\begin{align*}
\text{J} & = \text{CH}_3\text{COCH}_3 \\
\text{K} & = \text{CH}_3\text{C}==\text{CMe} \\
\text{L} & = \text{CH}_3\text{C}==\text{CMe} \\
\text{M} & = \text{CH}_3\text{C}==\text{CMe} \\
\end{align*}
\]

\[\text{CH}_3\text{C}==\text{CH}_2 \xrightarrow{\text{conc. H}_2\text{SO}_4} \text{M} \]

(05 x 4 = 20)

(ii) Selecting from the list given below, write the type of reaction taking place in reactions I, II and III.

- Nucleophilic Addition, Nucleophilic Substitution,
- Electrophilic Addition, Electrophilic Substitution, Elimination

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Type of Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Electrophilic substitution</td>
</tr>
<tr>
<td>II</td>
<td>Nucleophilic addition</td>
</tr>
<tr>
<td>III</td>
<td>Electrophilic addition</td>
</tr>
</tbody>
</table>

(05 x 3 = 15)

Note: Marks awarded only if each of the reactions I, II and III correct as given in the marking scheme

(iii) Using your knowledge of the mechanism of the reaction between alkenes and HBr, give the mechanism of reaction III.

\[
\begin{align*}
\text{CH}_3\text{C}==\text{CH}_2 & \xrightarrow{\text{H}^+} \text{CH}_3\text{C}==\text{CH}_3 \\
\text{CH}_3\text{C}==\text{CH}_3 & \xrightarrow{\text{OSO}_3\text{H}} \text{CH}_3\text{C}==\text{CH}_3 \\
\end{align*}
\]

The following may be accepted.

(15 marks)

(12 marks)

4(b): 50 marks
PART B - ESSAY
Answer two questions only. (Each question carries 150 marks)

5. (a) A titration between the mono acidic weak base B (0.15 mol dm⁻³) and HCl (0.10 mol dm⁻³) was carried out using a suitable indicator as described below.

The HCl solution (25.00 cm³) was kept in the titration flask and the weak base B was added using a burette. The dissociation constant, K_b of the weak base at 25 °C is 1.00×10^{-5} mol dm⁻³. All the experiments were conducted at 25 °C.

(i) Calculate the pH of the acid solution in the titration flask, before the addition of the base, B.

\[
pH = -\log[H^+]
\]

\[
= -\log(0.1)
\]

\[
= 1.0 \quad (2+1)
\]

(ii) Calculate the pH of the solution in the titration flask, after the addition of 10.00 cm³ of the solution of B. Can the solution in the titration flask act as a buffer solution? Explain your answer.

\[
\text{pH after addition of 10.00 cm}^3 \text{ of B solution.}
\]

\[
[H^+] = \frac{0.1 \text{ mol dm}^{-3} \times 25.00 \text{ cm}^3 - 0.15 \text{ mol dm}^{-3} \times 10.00 \text{ cm}^3}{35.00 \text{ cm}^3} = 0.028 \text{ mol dm}^{-3}
\]

\[
\text{pH} = 1.5 \text{ (OR 1.6)} \quad (4+1)
\]

No OR this solution cannot act as a buffer solution. (3)

Only protonated base (conjugate acid) is present (No unreacted or unprotonated base) \(3\)

Note: If correctly explained using the addition of H^+ and OH^-, award full marks \(3\)

(iii) Calculate the volume of the weak base solution required to reach the equivalence point.

Volume of base required to reach equivalence point.

\[
V = \frac{0.1 \text{ mol dm}^{-3} \times 25.00 \text{ cm}^3}{0.15 \text{ mol dm}^{-3}} = 16.66 \text{ cm}^3
\]

\(16.67 \text{ cm}^3 \text{ OR the answer reported to one decimal place is also accepted} \quad (4+1)\)

(iv) Another 10.00 cm³ volume of the weak base was added to the titration flask after reaching the equivalence point. Calculate the pH of the solution in the titration flask.

\[
\text{pH after addition of 10.00 cm}^3 \text{ of base after reaching the equivalence point.}
\]

Weak base dissociates according to,

\[
\text{B (aq) + H}_2\text{O(l) ⇌ BH}^+(\text{aq}) + \text{OH}^-(\text{aq})}
\]

\[
K_b = \frac{[BH^+(\text{aq})][OH^-(\text{aq})]}{[B(\text{aq})]} \quad (4)
\]

\[
pOH = pK_b + \log \left(\frac{[BH^+(\text{aq})]}{[B(\text{aq})]}\right)
\]

Note: Physical states are required for the award of marks

Assuming that the amount dissociated is negligible, \(2\)
Concentration of the weak base \([B(aq)]\) = \(\frac{0.15 \text{ mol dm}^{-3} \times 10.00 \text{ cm}^3}{25.00 \text{ cm}^3 + 16.66 \text{ cm}^3 + 10.00 \text{ cm}^3}\) \(\text{(4+1)}\)

Concentration of the protonated weak base \([BH^+(aq)]\) = \(\frac{0.15 \text{ mol dm}^{-3} \times 16.66 \text{ cm}^3}{25.00 \text{ cm}^3 + 16.66 \text{ cm}^3 + 10.00 \text{ cm}^3}\) \(\text{(4+1)}\)

\[pOH = -\log(1 \times 10^{-5}) + \log\left(\frac{0.15 \text{ mol dm}^{-3} \times 16.66 \text{ cm}^3}{0.15 \text{ mol dm}^{-3} \times 10.00 \text{ cm}^3}\right)\] \(\text{(4+1)}\)

\[pOH = 5.0 + 0.221 = 5.221\]

\[\text{pH} = 8.78 \text{ (or 8.7 or 8.9 or 9)}\] \(\text{(4+1)}\)

(v) Can the solution obtained in (iv) above act as a buffer solution? Explain your answer.

Yes OR it can act as a buffer solution. \(\text{(3)}\)

The solution in the titration flask contains the protonated base (conjugate acid) and unreacted base.

Note : If correctly explained using the addition of H\(^+\) and OH\(^-\), award full marks \(\text{(3)}\)

(vi) Sketch the variation in pH of the mixture in the titration flask with the volume of the weak base solution added (titration curve). Label the axes, indicate pH on the y-axis and the volume of weak base solution added on the x-axis. Mark the equivalence point approximately. [Calculation of pH at equivalence point is not expected.]

Curve starts at pH=1 and reaches pH=9 and has the correct shape \(\text{(4)}\)

Equivalence volume marked \(\text{(2)}\)

Equivalence pH (between pH = 5 and pH=7) marked \(\text{(2)}\)

Axes are labeled (with units where applicable) \(\text{(1+1)}\)

\[5 \text{ (a): 75 marks}\]
(b) The following two experiments were carried out at a constant temperature using the volatile liquids C and D which form an ideal solution.

Experiment I: The liquids C and D were introduced into an evacuated rigid container and allowed to reach equilibrium. When the system was at equilibrium, it was observed that the mole fractions of C and D in the liquid phase \((L_i)\) were 0.3 and 0.7 respectively. Total pressure in the container was \(2.70 \times 10^4\) Pa.

Experiment II: This experiment was conducted using different amounts of C and D. When the equilibrium was established, it was observed that the mole fractions of C and D in the liquid phase \((L_i)\) were 0.6 and 0.4 respectively. Total pressure of the container was \(2.40 \times 10^4\) Pa.

(i) Give the relationship between the partial pressure of C in the vapour phase \((P_C)\), its saturated vapour pressure \((P^0_C)\) and its mole fraction in the liquid phase \((X_C)\) in the form of an equation.

This equation states a commonly used law in physical chemistry. Write the name of the law.

\[
P_C = x_C P^0_C \quad \text{(Award marks only for these symbols)} \quad (5)
\]

Raoult’s law \((4) \)

(ii) Calculate the saturated vapour pressures of C and D.

Experiment I
\[
2.7 \times 10^4 \text{ Pa} = 0.3 \ P^0_C + 0.7 \ P^0_D \quad \text{---(1)}
\]

Experiment II
\[
2.4 \times 10^4 \text{ Pa} = 0.6 \ P^0_C + 0.4 \ P^0_D \quad \text{---(2)}
\]

\((4+1) \)

\[
(1) \times 2 \times (2)
\]

\[
P^0_D = 3.0 \times 10^4 \text{ Pa} \quad \text{(4+1)}
\]

\[
P^0_C = \frac{(2.4 \times 10^4 \text{ Pa} - 0.4 \times 3.0 \times 10^4 \text{ Pa})}{0.6}
= 2.0 \times 10^4 \text{ Pa} \quad \text{(4+1)}
\]

(iii) Calculate the mole fractions of C and D in the vapour phase \((V_i)\) of experiment I.

Mole fractions in the gas phase (experiment I, \(V_i\))
\[
X^g_{C,I} = \frac{0.3 \times 2.0 \times 10^4 \text{ Pa}}{2.7 \times 10^4 \text{ Pa}} \quad \text{(1+1)}
\]

\[
= 0.2 \quad \text{(OR} \ 0.22 \ \text{OR} \ 2/9) \quad \text{(1+1)}
\]

\[
X^g_{D,I} = 1 - 0.2 \quad \text{(1+1)}
\]

\[
= 0.8 \quad \text{(OR} \ 0.78 \ \text{OR} \ 7/9) \quad \text{(1+1)}
\]

(iv) Calculate the mole fractions of C and D in the vapour phase \((V_{II})\) of experiment II.

Mole fractions in the gas phase (experiment II, \(V_{II}\))
\[
X^g_{C,II} = \frac{0.6 \times 2.0 \times 10^4 \text{ Pa}}{2.4 \times 10^4 \text{ Pa}} \quad \text{(1+1)}
\]

\[
= 0.5 \quad \text{(1+1)}
\]

\[
X^g_{D,II} = 1 - 0.5 \quad \text{(1+1)}
\]

\[
= 0.5 \quad \text{(1+1)}
\]
(v) Show the compositions of liquid and vapour phases \((L_I, L_{II}, V_I\) and \(V_{II}\)) and relevant pressures in the above two experiments on a pressure-composition phase diagram drawn at constant temperature.

\[
\text{Pressure (Pa)}
\]

\[
L = \text{liquid}, \quad V = \text{vapour}
\]

Note: Graph could also be drawn by reversing the increasing direction of the mole fraction of C.

Mark accordingly

Axes labeled (with appropriate units where applicable) \(2+2\)

\(P^0_C\) and \(P^0_D\) marked \(2+2\)

Line & curve (starts and ends at correct pressures) \(2+2\)

Phases at equilibrium in each region identified \(2+2+2\)

point \(L_I\) marked at \(X_C = 0.3\) \(2\)

point \(L_{II}\) marked at \(X_C = 0.6\) \(2\)

point \(V_I\) marked at \(X_C = 0.2\) \(2\)

point \(V_{II}\) marked at \(X_C = 0.5\) \(2\)

points \(L_I\) and \(V_I\) are at the same level \(2\)

points \(L_{II}\) and \(V_{II}\) are at the same level \(2\)

Note: No marks for temperature composition phase diagram

5 (b): 75 marks
6. (a) An organic solvent (org-1) and water(aq) are immiscible and form a biphasic system. Partition coefficient for the distribution of X between org-1 and water at temperature T is, $K_D = \frac{[X]_{org-1}}{[X]_{aq}} = 4.0$

An amount of 0.50 mol of X was added to a system containing 100.00 cm3 of org-1 and 100.00 cm3 of water. The system was allowed to reach equilibrium at temperature T.

(i) Calculate the concentration of X in org-1.

Calculation of $[X]_{org-1}$

$K_D = \frac{[X]_{org-1}}{[X]_{aq}} = 4.0$

$V=$ volume, $x=$ amount (mols) in aqueous phase.

$K_D = \frac{0.5 \text{ mol-}x}{V} = 4.0$ \hspace{1cm} (No marks for substitution in mols) \hspace{1cm} (4+1)

$x = 0.1 \text{ mol}$ \hspace{1cm} (4+1)

$[x]_{org-1} = \frac{0.4 \text{ mol}}{100 \times 10^{-3} \text{ dm}^3} = 4.0 \text{ mol dm}^{-3}$ \hspace{1cm} (4+1)

(ii) Calculate the concentration of X in water.

$[x]_{aq} = \frac{0.1 \text{ mol}}{100 \times 10^{-3} \text{ dm}^3} = 1.0 \text{ mol dm}^{-3}$ \hspace{1cm} (4+1)

(b) The compound Y is soluble only in the aqueous phase. In the aqueous phase, X and Y react to form Z. The presence of Y and Z does not affect the distribution of X between org-1 and water.

A series of biphasic systems containing org-1 and water were prepared. Then different amounts of X were distributed in the biphasic systems and the systems were allowed to reach equilibrium. The initial rate of the reaction between X and Y in the aqueous phase was measured after adding Y into the aqueous phase of these biphasic systems. Results of these experiments conducted at temperature T are given in the table.

<table>
<thead>
<tr>
<th>Experiment Number</th>
<th>Volume of water (cm3)</th>
<th>Volume of org-1 (cm3)</th>
<th>Total amount of X added (mol)</th>
<th>Total amount of Y added (mol)</th>
<th>Initial rate of the reaction (mol dm$^{-3}$ s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.00</td>
<td>100.00</td>
<td>0.05</td>
<td>0.02</td>
<td>2.00×10^{-6}</td>
</tr>
<tr>
<td>2</td>
<td>100.00</td>
<td>100.00</td>
<td>0.10</td>
<td>0.04</td>
<td>1.60×10^{-5}</td>
</tr>
<tr>
<td>3</td>
<td>50.00</td>
<td>50.00</td>
<td>0.25</td>
<td>0.02</td>
<td>4.00×10^{-4}</td>
</tr>
</tbody>
</table>

Orders of the reaction with respect to X and Y are m and n respectively. The rate constant of the reaction at temperature T is k.

(i) Given that the concentrations of X and Y in the aqueous phase are $[X]_{aq}$ and $[Y]_{aq}$ respectively, write the rate expression for the reaction in terms of $[X]_{aq}$, $[Y]_{aq}$, m, n and k.

\[
\text{Rate} = k [X]_aq^m [Y]_aq^n \quad \text{OR} \quad \frac{-\Delta [X]_aq}{\Delta t} = k [X]_aq^m [Y]_aq^n \quad \text{OR} \quad \frac{-\Delta [Y]_aq}{\Delta t} = k [X]_aq^m [Y]_aq^n \quad (10)
\]
(ii) Calculate the initial concentration of X in the aqueous phase in each experiment.

Let x be the amount (moles) of X in the aqueous phase and \(n_x \) be the total amount (moles) of X added.
Equal volumes of org-1 and water are used in all the experiments.

\[[X]_{aq} = \frac{n_x}{5 \times V_{aq}} \]

<table>
<thead>
<tr>
<th>Experiment</th>
<th>([X]_{aq} \text{ mol dm}^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>1.0</td>
</tr>
</tbody>
</table>

(iii) Calculate the initial concentration of Y in the aqueous phase in each experiment.

Let \(n_Y \) be the total amount of Y (moles) added.
Y is only soluble in the aqueous phase.

\[[Y]_{aq} = \frac{n_Y}{V_{aq}} \]

<table>
<thead>
<tr>
<th>Experiment</th>
<th>([Y]_{aq} \text{ mol dm}^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>0.4</td>
</tr>
</tbody>
</table>

(iv) Calculate the orders \(m \) and \(n \) of the reaction with respect to X and Y respectively.

\[2.00 \times 10^{-6} \text{ mol dm}^{-3} s^{-1} = k \ (0.1 \text{ mol dm}^{-3})^m \ (0.2 \text{ mol dm}^{-3})^n \]
\hfill ---(1) \hspace{1cm} (10 +2)

\[1.60 \times 10^{-5} \text{ mol dm}^{-3} s^{-1} = k \ (0.2 \text{ mol dm}^{-3})^m \ (0.4 \text{ mol dm}^{-3})^n \]
\hfill ---(2) \hspace{1cm} (10 +2)

\[4.00 \times 10^{-4} \text{ mol dm}^{-3} s^{-1} = k \ (1.0 \text{ mol dm}^{-3})^m \ (0.4 \text{ mol dm}^{-3})^n \]
\hfill ---(3) \hspace{1cm} (10 +2)

Finding of the order \(m \)
From (2)/(3)
\[1.60 \times 10^{-5} \text{ mol dm}^{-3} s^{-1} = k \ (0.2 \text{ mol dm}^{-3})^m \ (0.4 \text{ mol dm}^{-3})^n \]
\hfill (5)

\[4.00 \times 10^{-4} \text{ mol dm}^{-3} s^{-1} = k \ (1.0 \text{ mol dm}^{-3})^m \ (0.4 \text{ mol dm}^{-3})^n \]

\[0.04 = (0.2)^n \]
\[m = 2 \]
\hfill (4+1)

Finding of the order \(n \)
From (3)/(1)
\[4.00 \times 10^{-4} \text{ mol dm}^{-3} s^{-1} = k \ (1.0 \text{ mol dm}^{-3})^m \ (0.4 \text{ mol dm}^{-3})^n \]
\hfill (5)

\[2.00 \times 10^{-6} \text{ mol dm}^{-3} s^{-1} = k \ (0.1 \text{ mol dm}^{-3})^m \ (0.2 \text{ mol dm}^{-3})^n \]

\[200 = 10^2 (2)^n \]
\[n = 1 \]
\hfill (4+1)
(v) Calculate the rate constant of the reaction.

\[
\text{Rate constant} \\
\text{From (1)} \\
k = 2.00 \times 10^{-6} \text{ mol dm}^{-3} \text{ s}^{-1} \\
(0.1 \text{ mol dm}^{-3})^2 (0.2 \text{ mol dm}^{-3})^1 \\
= 1.0 \times 10^{-3} \text{ mol}^2 \text{ dm}^6 \text{ s}^{-1}
\]

(vi) An experiment is designed to study the effect of temperature on the reaction rate using the partition coefficient given above.

Is this a suitable experiment to study the effect of temperature on the rate of the reaction? Explain your answer.

Not suitable
Partition coefficient depends on temperature.

\[
\text{(c) The organic solvent org-2 and water are also immiscible and form a biphasic system.} \ X \ (0.20 \text{ mol}) \\
\text{was added to a system containing 100.00 cm}^3 \text{ of org-2 and 100.00 cm}^3 \text{ of water and allowed to} \\
\text{reach equilibrium at the temperature T. Then Y (0.01 mol) was added to the aqueous phase and} \\
\text{the initial rate of the reaction was measured. Y does not dissolve in org-2. The initial rate of the} \\
\text{reaction between X and Y in the aqueous phase was found to be} \ 6.40 \times 10^{-7} \text{ mol dm}^{-3} \text{ s}^{-1}. \\
\text{Calculate the partition coefficient} \ \frac{[X]_{\text{org-2}}}{[X]_{\text{aq}}} \text{ for the distribution of X between org-2 and water.} \\
\text{[X]_{org-2} is the concentration of X in the org-2 phase.} \\
\text{Reaction takes place in the aqueous medium. Therefore, the rate constant is the same.} \\
\text{Rate} = k [X]_{aq}^2 [Y]_{aq} \\
6.40 \times 10^{-7} \text{ mol dm}^{-3} \text{ s}^{-1} = 1.00 \times 10^{-3} \text{ mol}^2 \text{ dm}^6 \text{ s}^{-1} [X]_{aq}^2 0.1 \text{ mol dm}^{-3} \\
[X]_{aq}^2 = 6.4 \times 10^{-3} \text{ mol}^2 \text{ dm}^6 = 64 \times 10^{-4} \text{ mol}^2 \text{ dm}^6 \\
[X]_{aq} = 8.0 \times 10^{-2} \text{ mol dm}^{-3} \\
K_D = \frac{[X]_{\text{org-2}}}{[X]_{aq}} = \frac{0.2 \text{ mol}}{0.1 \text{ dm}^3} \div \frac{0.08 \text{ mol dm}^{-3}}{0.08 \text{ mol dm}^{-3}} \\
K_D = 24
\]
Alternate answer for 6(c)

\[K_D = \frac{0.2 \text{ mol} - x}{0.5 \text{ dm}^{-3}} \]
\[x = \frac{0.2 \text{ mol}}{K_D + 1} \]
\[[X]_a = \frac{0.2 \text{ mol}}{0.1 \text{ dm}^3} = \frac{2}{(K_D+1)} \text{ mol dm}^{-3} \]
\[\text{Rate} = k \left[X \right]_a^m \left[Y \right]_a^n \]

\[6.4 \times 10^{-7} \text{ mol dm}^{-3} \text{ s}^{-1} = 1 \times 10^{-3} \text{ mol dm}^{-3} \text{ s}^{-1} \left(\frac{2 \text{ mol dm}^{-3}}{(K_D+1)} \right)^2 (0.1 \text{ mol dm}^{-3}) \]
\[64 \times 10^{-4} = \left(\frac{2}{K_D+1} \right)^2 \]
\[K_D = 24 \]

6 (c): 25 marks

7. (a) The setup shown in the figure was used to find the relative atomic mass of the metal, M. The electrolysis was carried out for 10 minutes using a constant current. The mass of the cathode in cell A was increased by 31.75 mg whereas the mass of the cathode in cell B increased by 147.60 mg during this time period. (Assume that the electrolysis of water does not take place in cells A and B.)

(i) Identify the anode and cathode in each of the cells A and B (in terms of the numbers 1, 2, 3, and 4).

Cell A
Anode = 1
Cathode = 2

Cell B
Anode = 3
Cathode = 4

(ii) Write the half reaction taking place at each electrode in each cell.

Electrode reactions

<table>
<thead>
<tr>
<th>Cell</th>
<th>Electrode</th>
<th>Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>Cu(s) \rightarrow Cu^{2+}(aq) + 2e</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>Cu^{2+}(aq) + 2e \rightarrow Cu(s)</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>M(s) \rightarrow M^{3+}(aq) + 3e</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>M^{3+}(aq) + 3e \rightarrow M(s)</td>
</tr>
</tbody>
</table>

Note: physical states must be given
(iii) Calculate the constant current used in electrolysis.

Amount of Cu(s) dissolved = 31.75 \times 10^{-3} g
Charge required for this = \(2 \times 96500 \text{ c mol}^{-1} \times 31.75 \times 10^{-3} g = i \times 10 \times 60 \text{ s} \)
\[
\frac{63.5 \text{ g mol}^{-1}}{(1+1)+(1+1)+(1+1)+(1+1)}
\]
Correct stoichiometry
The current used in the electrolysis = \(i = 0.16 \text{ A} \) (4+1)

Alternative Answer for 7(a) (iii)

Amount of Cu deposited = \(\frac{31.75 \times 10^{-3} g}{63.5 \text{ g mol}^{-1}} \) (1+1)
\[
= 0.5 \times 10^{-3} \text{ mol}
\]
Amount of charge required = \(0.5 \times 10^{-3} \times 2 \text{ mol} \) For using correct stoichiometry (5)
\[
= 10^{-3} \text{ mol}
\]
\[
= 10^{-3} \text{ mol} \times 96500 \text{ C mol}^{-1}
= 96.5 \text{ C}
\]
Current = \(\frac{96.5 \text{ C}}{10 \times 60 \text{ s}} \) (1+1)
\[
= 0.16 \text{ A}
\]

(iv) Calculate the relative atomic mass of metal, \(M \).

Increase in mass of the electrode 4 in cell B is due to deposition of M(s)
Increase in mass = 147.6 \times 10^{-3} g
Amount of M deposited = 147.6 \times 10^{-3} g /W
W=molecular weight of M
Charge needed for this = \(3 \times 96500 \text{ c mol}^{-1} \times 147.6 \times 10^{-3} g = 0.16 \text{ A} \times 600 \text{ s} \)
\[
W = \frac{147.6 \times 3 \times 63.5}{31.75 \times 2} \text{ g mol}^{-1}
\]
\[
= 442.8 \text{ g mol}^{-1}
\]

Alternative Answer (I) for 7(a) (iv)

The amount of charge flown is equal.
\[
\frac{(1+1) \times 147.6 \times 10^{-3} \text{ g} \times 3 \text{ mol}}{W} = \frac{(1+1) \times 31.75 \times 10^{-3} \text{ g} \times 2 \text{ mol}}{63.5 \text{ g mol}^{-1}}
\]
\[
W = \frac{147.6 \times 3 \times 63.5}{31.75 \times 2} \text{ g mol}^{-1}
\]
\[
= 442.8 \text{ g mol}^{-1}
\]

Alternative Answer (II) for 7(a) (iv)

Amount of M deposited = \(\frac{\text{Amount of charge flown}}{3} \)
\[
= \frac{10^{-3} \text{ mol}}{3}
\]
\[
= \frac{147.6 \times 10^{-3} \text{ g}}{10^{-3} \text{ mol}} \] (1+1)
\[
= 147.6 \times 3 \text{ g mol}^{-1}
\]
\[
= 442.8 \text{ g mol}^{-1}
\]

Note: If symbols (or any other values) are used for the atomic mass of Cu and Faraday constant and the answers are provided with those symbols or using those values, award full marks.

7 (a): 75 marks
(b) (i) A, B and C are coordination compounds. They have an octahedral geometry. In each compound, two types of ligands are coordinated to the metal ion. The molecular formulae of the compounds are (not in order): NiCl₂H₁₂N₄, NiI₂H₁₆N₄O₂ and NiCl₂H₁₅N₃O₃.

Given below are the observations when aqueous solutions of the compounds are treated with Pb(CH₃COO)₂(aq).

<table>
<thead>
<tr>
<th>Compound</th>
<th>Pb(CH₃COO)₂(aq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A white precipitate that is soluble in hot water</td>
</tr>
<tr>
<td>B</td>
<td>No precipitate</td>
</tr>
<tr>
<td>C</td>
<td>A yellow precipitate that is soluble in hot water</td>
</tr>
</tbody>
</table>

A with Pb(CH₃COO)₂

\[\text{PbCl}_2 \downarrow \] (03)

C with Pb(CH₃COO)₂

\[\text{PbI}_2 \downarrow \] (03)

Cl⁻ Add a solution of AgNO₃.

A white precipitate is formed. The white precipitate dissolves in dilute NH₄OH. (03)

I⁻ Add a solution of AgNO₃.

A yellow precipitate is formed. The yellow precipitate does not dissolve in conc. NH₄OH. (03)

OR Add a few drops of CHCl₃ and then a little Cl₂ water. Shake the tube. CHCl₃ layer turns violet. (03)
(ii) A transition metal M forms a coloured complex ion P in aqueous medium. It has the general formula $[M(H_2O)_n]^{m+}$. It undergoes the reactions given below.

\[
\text{aq. NH}_3 \overset{P}{\rightarrow} \text{conc. HCl} \overset{Q}{\rightarrow} \overset{R}{\downarrow} \text{excess NH}_3 \overset{S}{\downarrow}
\]

(green coloured precipitate) (yellow coloured solution) (deep blue coloured solution)

I. Identify the metal M. Give the oxidation state of M in complex ion P.

\[
\text{Ni, } +2 \quad \text{OR} \quad \text{Ni}^{2+} \quad (06 + 03)
\]

II. Give the electronic configuration of M in the complex ion P.

\[
1s^22s^22p^63s^23p^63d^8 \quad (03)
\]

III. Give the values of n and m.

\[
n = 6 \quad m = 2 \quad (03 + 03)
\]

IV. Give the geometry of P.

octahedral \quad (03)

V. Give the structures of Q, R and S.

\[
Q: \quad \text{Ni(OH)}_2 \quad (03)
\]

\[
R: \quad [\text{NiCl}_4]^{2-} \quad (03)
\]

\[
S: \quad [\text{Ni(NH}_3)_6]^{2+} \quad (03)
\]

VI. Give the IUPAC names of the complex ions, P, R and S.

\[
P: \quad \text{hexaaquanickel(II) ion} \quad (03)
\]

\[
R: \quad \text{tetrachloridonickelate(II) ion} \quad (03)
\]

\[
S: \quad \text{hexaamminenickel(II) ion} \quad (03)
\]

7(b): 75 marks
PART C — ESSAY

Answer two questions only. (Each question carries 150 marks.)

8. (a) Using \(\text{C}_6\text{H}_5\text{CO}_2\text{CH}_3 \) as the only organic starting material and as reagents only those given in the list, show how you would synthesize the following compound in not more than seven (7) steps.

\[
\begin{align*}
\text{C}_6\text{H}_5\text{C} &= \text{CHC}_6\text{H}_5 \\
\text{CH}_2\text{C}_6\text{H}_5
\end{align*}
\]

\[
\begin{align*}
\text{C}_6\text{H}_5\text{CO}_2\text{CH}_3 &\xrightarrow{1. \text{LiAlH}_4} \text{C}_6\text{H}_5\text{CH}_2\text{OH} & & \text{1. C}_6\text{H}_5\text{CH}_2\text{MgCl} & \text{2. H}^+ / \text{H}_2\text{O} & \text{Mg/ dry ether} \\
&\xrightarrow{2. \text{H}^+ / \text{H}_2\text{O}} \text{C}_6\text{H}_5\text{CH}_2\text{Cl} & & \text{PCl}_3 & \text{List of reagents} \\
\end{align*}
\]

\[
\begin{align*}
\text{C}_6\text{H}_5\text{C} &= \text{CHC}_6\text{H}_5 \\
\text{CH}_2\text{C}_6\text{H}_5
\end{align*}
\]

\[
\begin{align*}
\text{C}_6\text{H}_5\text{CO}_2\text{CH}_3 &\xrightarrow{\text{conc. H}_2\text{SO}_4 \text{ (heat)}} \text{C}_6\text{H}_5\text{C} &= \text{CHC}_6\text{H}_5 \\
&\xrightarrow{\text{heat}} \text{C}_6\text{H}_5\text{CH}_2\text{MgCl}
\end{align*}
\]

(60 marks)

Alternative Answer (I) for 8(a)

\[
\begin{align*}
\text{C}_6\text{H}_5\text{CO}_2\text{CH}_3 &\xrightarrow{\text{H}^+ / \text{H}_2\text{O}} \text{C}_6\text{H}_5\text{CO}_2\text{H} & & \text{1. LiAlH}_4 & \text{2. H}^+ / \text{H}_2\text{O} \\
&\xrightarrow{1. \text{C}_6\text{H}_5\text{CH}_2\text{MgCl} \text{2. H}^+ / \text{H}_2\text{O}} \text{C}_6\text{H}_5\text{CH}_2\text{OH} & & \text{PCl}_3 & \text{List of reagents} \\
&\xrightarrow{\text{PCl}_3} \text{C}_6\text{H}_5\text{CH}_2\text{Cl} & & \text{Mg/ dry ether} & \text{Mg/ dry ether} \\
\end{align*}
\]

\[
\begin{align*}
\text{C}_6\text{H}_5\text{C} &= \text{CHC}_6\text{H}_5 \\
\text{CH}_2\text{C}_6\text{H}_5
\end{align*}
\]

\[
\begin{align*}
\text{C}_6\text{H}_5\text{CO}_2\text{CH}_3 &\xrightarrow{\text{conc. H}_2\text{SO}_4 \text{ (heat)}} \text{C}_6\text{H}_5\text{C} &= \text{CHC}_6\text{H}_5 \\
&\xrightarrow{\text{heat}} \text{C}_6\text{H}_5\text{CH}_2\text{MgCl}
\end{align*}
\]

(60 marks)
Note: 1. Do not award any marks if there are more than 7 steps.

2. Do not count the hydrolysis steps subsequent to the reaction with Grignard reagent and with LiAlH₄ as separate steps.

8 (a) : 60 marks
(b) Show how you would carry out each of the following conversions in not more than three (3) steps.

(i)
\[
\begin{align*}
\text{NH}_2 & \quad \xrightarrow{\text{Br}} \\
\text{Cl} & \quad \xrightarrow{\text{CH}_2\text{CH}_3}
\end{align*}
\]

(ii)
\[
\begin{align*}
\text{HCl} & \quad \xrightarrow{0.5 \text{ °C}} \\
\text{CuCl} & \quad \xrightarrow{\text{Br}_2}
\end{align*}
\]

Alternative Answer for 8(b) (i)

\[
\begin{align*}
\text{NH}_2 & \quad \xrightarrow{\text{NaNO}_2} \\
\text{HCl} & \quad \xrightarrow{0.5 \text{ °C}} \\
\text{CuBr} & \quad \xrightarrow{\text{HBr}} \\
\text{FeCl}_3 & \quad \xrightarrow{\text{Cl}_2}
\end{align*}
\]

(30 marks)

(ii)
\[
\begin{align*}
\text{COCH}_3 & \quad \xrightarrow{\text{CH}_2\text{Cl}} \\
\text{COCH}_3 & \quad \xrightarrow{\text{Zn(Hg)}} \\
\text{CH}_3 & \quad \xrightarrow{\text{HCl}} \\
\text{CH}_3 & \quad \xrightarrow{\text{CH}_2\text{CH}_3}
\end{align*}
\]

Alternative Answer for 8(b) (ii)

\[
\begin{align*}
\text{CHO} & \quad \xrightarrow{\text{CO/HCl}} \\
\text{CHO} & \quad \xrightarrow{\text{C}_2\text{H}_3\text{Cl}} \\
\text{CHO} & \quad \xrightarrow{\text{Zn(Hg)}} \\
\text{CH}_3 & \quad \xrightarrow{\text{HCl}} \\
\text{CH}_3 & \quad \xrightarrow{\text{CH}_2\text{CH}_3}
\end{align*}
\]

(30 marks)

8 (b) : 60 marks
(c) The following reaction gives two products.

\[\text{CH}_3\text{CH}_2\text{CH}_2\text{Br} + \text{C}_2\text{H}_5\text{O}^- \rightarrow \text{CH}_3\text{CH}_2\text{CH}_2\text{OC}_2\text{H}_5 + \text{CH}_3\text{CH} = \text{CH}_2 \]

(i) Write the structures of the two products.

(ii) Write the mechanisms for the formation of these two products.

9. (a) Solution X contains four metal cations. The following tests were carried out to identify these cations.

<table>
<thead>
<tr>
<th>Test</th>
<th>Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Dilute HCl was added to a small portion of X.</td>
<td>No precipitate.</td>
</tr>
<tr>
<td>2. H_2S was bubbled through the solution from 1 above.</td>
<td>A black precipitate (P_1)</td>
</tr>
<tr>
<td>3. P_1 was separated by filtration. The filtrate was boiled to remove the H_2S, cooled, and NH_4Cl/NH_3OH was added.</td>
<td>A green precipitate (P_2)</td>
</tr>
<tr>
<td>4. P_2 was separated by filtration and H_2S was bubbled through the filtrate.</td>
<td>A white precipitate (P_3)</td>
</tr>
<tr>
<td>5. P_3 was separated by filtration. The filtrate was boiled to remove the H_2S, cooled, and (NH_4)_2CO_3 was added.</td>
<td>A white precipitate (P_4)</td>
</tr>
</tbody>
</table>

The following tests were carried out on precipitates P_1, P_2, P_3 and P_4:

<table>
<thead>
<tr>
<th>Precipitate</th>
<th>Test</th>
<th>Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>P_1 was dissolved in hot dil. HNO_3 and conc. NH_3OH was added in excess.</td>
<td>A deep blue coloured solution (solution 1)</td>
</tr>
</tbody>
</table>
| P_2 | * Excess dil. NaOH was added to P_2 followed by H_2O_2.
* Dilute H_2SO_4 was added to solution 2. | A yellow coloured solution (solution 2)
An orange coloured solution (solution 3) |
| P_3 | * P_3 was dissolved in dil. HCl and dil. NaOH was added gradually.
* Addition of dil. NaOH was continued. | A white precipitate (P_3)
P_3 dissolved to give a colourless solution (solution 4) |
| P_4 | P_4 was dissolved in conc. HCl and subjected to the flame test. | A brick-red flame |
(i) Identify the four metal cations in solution X (Reasons are not required.)

\[\text{Cu}^{2+}, \text{Cr}^{3+}, \text{Zn}^{2+}, \text{Ca}^{2+} \]

\[(05 \text{ marks} \times 4 = 20) \]

(ii) Identify the precipitates \(P_1, P_2, P_3, P_4 \) and \(P_5 \) and the chemical species responsible for the colours of solutions 1, 2, 3 and 4.

(Note: Write chemical formulae only.)

\[P_1: \text{CuS} \]
\[P_2: \text{Cr(OH)}_3 \]
\[P_3: \text{ZnS} \]
\[P_4: \text{CaCO}_3 \]
\[P_5: \text{Zn(OH)}_2 \]

\[(06 \text{ marks} \times 5 = 30) \]

(b) The water sample \(Y \) contains the anions \(\text{SO}_4^{2-}, \text{SO}_2^{2-}, \text{and NO}_3^- \). The following procedures were carried out for the quantitative analysis of the anions present in the water sample.

Procedure 1

To 25.00 cm\(^3\) of sample \(Y \), an excess of a dilute solution of \(\text{BaCl}_2 \) was added with stirring. Thereafter, excess dilute HCl was added with stirring to the precipitate formed until there was no further evolution of a gas with pungent odour. The solution was allowed to stand for 10 minutes and filtered. The precipitate was washed with distilled water and dried in an oven at 105 °C until a constant mass was obtained. The mass of the precipitate was 0.174 g. The filtrate obtained was kept for further analysis (see procedure 3).

Procedure 2

To 25.00 cm\(^3\) of sample \(Y \), an excess of dilute \(\text{H}_2\text{SO}_4 \) and acidified 5% \(\text{KIO}_3 \) solutions were added. The liberated \(\text{I}_2 \) was immediately titrated with 0.020 mol dm\(^{-3}\) \(\text{Na}_2\text{S}_2\text{O}_3 \) solution using starch as the indicator. The volume of \(\text{Na}_2\text{S}_2\text{O}_3 \) used was 20.00 cm\(^3\). (Assume that in this procedure, \(\text{SO}_2^{2-} \) ions are oxidized to sulphate ions \(\text{(SO}_4^{2-} \) without any loss to the atmosphere.)

Procedure 3

The filtrate from procedure 1 was neutralized with dilute \(\text{NaOH} \) and to it excess Al powder and dilute \(\text{NaOH} \) were added. The solution was heated and the gas evolved was transferred quantitatively to react with a 20.00 cm\(^3\) volume of 0.11 mol dm\(^{-3}\) HCl solution. Completion of the reaction was tested with litmus. The HCl remaining after reacting with the gas evolved was titrated with 0.10 mol dm\(^{-3}\) \(\text{NaOH} \) solution using methyl orange as the indicator. The volume of \(\text{NaOH} \) required was 10.00 cm\(^3\).

(i) Write balanced ionic/non-ionic equations for the reactions taking place in procedures 1, 2 and 3.
Procedure I

\[
\begin{align*}
\text{SO}_3^{2-} + \text{BaCl}_2 & \rightarrow \text{BaSO}_3 \downarrow + 2\text{Cl}^- \quad \text{OR} \quad \text{Ba}^{2+} + \text{SO}_3^{2-} \rightarrow \text{BaSO}_3 \downarrow \quad (02) \\
\text{SO}_4^{2-} + \text{BaCl}_2 & \rightarrow \text{BaSO}_4 \downarrow + 2\text{Cl}^- \quad \text{OR} \quad \text{Ba}^{2+} + \text{SO}_4^{2-} \rightarrow \text{BaSO}_4 \downarrow \quad (02) \\
\text{BaSO}_3 \downarrow + 2\text{HCl} & \rightarrow \text{BaCl}_2 + \text{SO}_2 + \text{H}_2\text{O} \quad (03) \\
\text{BaSO}_4 \text{ will remain insoluble} \\
\end{align*}
\]

Procedure 2

\[
\begin{align*}
2\text{IO}_3^- + 12\text{H}^+ + 10\text{e}^- & \rightarrow \text{I}_2 + 6\text{H}_2\text{O} \quad (02) \\
5(\text{SO}_3^{2-} + \text{H}_2\text{O}) & \rightarrow \text{SO}_4^{2-} + 2\text{H}^+ + 2\text{e}^- \quad (02) \\
2\text{IO}_3^- + 5\text{SO}_3^{2-} + 2\text{H}^+ & \rightarrow \text{I}_2 + 5\text{SO}_4^{2-} + \text{H}_2\text{O} \quad (03) \\
\text{OR} \\
2\text{IO}_3^- + 12\text{H}^+ + 10\text{e}^- & \rightarrow \text{I}_2 + 6\text{H}_2\text{O} \quad (02) \\
5(\text{SO}_2 + 2\text{H}_2\text{O}) & \rightarrow \text{SO}_4^{2-} + 4\text{H}^+ + 2\text{e}^- \quad (02) \\
2\text{IO}_3^- + 5\text{SO}_2 + 4\text{H}_2\text{O} & \rightarrow \text{I}_2 + 5\text{SO}_4^{2-} + 8\text{H}^+ \quad (03) \\
\text{I}_2 + 2\text{e}^- & \rightarrow 2\text{I}^- \quad (02) \\
2\text{S}_2\text{O}_3^{2-} & \rightarrow \text{S}_4\text{O}_6^{2-} + 2\text{e}^- \quad (02) \\
\text{I}_2 + 2\text{S}_2\text{O}_3^{2-} & \rightarrow \text{S}_4\text{O}_6^{2-} + 2\text{I}^- \quad (03) \\
\text{Therefore, } 5\text{SO}_3^{2-} & \equiv 2\text{S}_2\text{O}_3^{2-} \text{ OR } 5\text{SO}_2 \equiv 2\text{S}_2\text{O}_3^{2-} \text{ & } \text{SO}_2 \equiv \text{SO}_3^{2-} \quad (02) \\
\end{align*}
\]

Procedure 3

\[
\begin{align*}
3\text{NO}_3^- + 8\text{Al} + 5\text{OH}^- + 2\text{H}_2\text{O} & \rightarrow 8\text{AlO}_2^- + 3\text{NH}_3 \quad (02) \\
\text{NH}_3 + \text{HCl} & \rightarrow \text{NH}_4\text{Cl} \quad (02) \\
\text{HCl} + \text{NaOH} & \rightarrow \text{NaCl} + \text{H}_2\text{O} \quad (02) \\
\end{align*}
\]

(ii) Determine the concentrations (mol dm\(^{-3}\)) of \(\text{SO}_3^{2-}\), \(\text{SO}_4^{2-}\) and \(\text{NO}_3^-\) in water sample \(Y\). (\(\text{Ba} = 137; \text{S} = 32; \text{O} = 16\))

Procedure I – Determination of \(\text{SO}_4^{2-}\)

\[
\begin{align*}
\text{Molar mass of } \text{BaSO}_4 & = 137 + 32 + 64 = 233 \quad (02) \\
\text{Mass of } \text{BaSO}_4 \text{ precipitate} & = 0.174 \text{ g} \\
\text{Therefore, moles of } \text{BaSO}_4 & = \frac{0.174}{233} \quad (02) \\
\text{Therefore, moles of } \text{SO}_4^{2-} & = \frac{0.174}{233} = 7.47 \times 10^{-4} \quad (02) \\
\text{Concentration of } \text{SO}_4^{2-} & = \frac{7.47 \times 10^{-4}}{25} \times 1000 \quad (02) \\
& = 0.029 \text{ (0.03) mol dm}^{-3} \quad (03 + 01) \\
\end{align*}
\]
Procedure 2 — Determination of SO_3^{2-}:

Moles of $\text{S}_2\text{O}_3^{2-}$:

\[
\frac{0.02}{1000} \times 20
\]

(02)

Therefore, moles of SO_3^{2-}:

\[
\frac{0.02}{1000} \times 20 \times \frac{5}{2}
\]

(02)

Concentration of SO_3^{2-}:

\[
\frac{0.02}{1000} \times 20 \times \frac{5}{2} \times \frac{1000}{25}
\]

\[= 0.04 \text{ mol dm}^{-3}
\]

(02)

Procedure 3 — Determination of NO_3^-:

Moles of HCl:

\[
\frac{0.11}{1000} \times 20
\]

(02)

Moles of NaOH:

\[
\frac{0.10}{1000} \times 10
\]

(02)

Since NaOH and HCl react in the ratio of 1:1

Moles of HCl reacted with NH_3:

\[
\frac{0.11}{1000} \times 20 - \frac{0.10}{1000} \times 10
\]

(02)

\[
= \frac{1}{1000} (2.2 - 1) = \frac{1.2}{1000}
\]

(02)

Therefore, moles of NH_3:

\[
\frac{1.2}{1000}
\]

(02)

Therefore, moles of NO_3^-:

\[
\frac{1.2}{1000} \times \frac{1000}{25}
\]

(02)

Concentration of NO_3^-:

\[= 0.048 \text{ mol dm}^{-3}
\]

(02)

(iii) Give colour changes that would be observed in the titrations in procedures 2 and 3.

(Note: Assume that other ions that may interfere with the analysis are not present in sample Y.)

Procedure 2: Blue \rightarrow Colourless

(03)

Procedure 3: Red \rightarrow Yellow

(03)

9(b): 75 marks
10. (a)

The flow chart given above indicates the production of metal magnesium (Mg) using the Dow Process.

Answer the following questions based on the flow chart.

(i) Identify the starting material A.

 Sea water/ Bittern solution (03)

(ii) Identify the processes employed at B, C, D, E, F and G from the list below.

 evaporation, dissolution, thermal decomposition, electrolysis, recycling of a reagent, precipitation

 B: thermal decomposition

 C: precipitation

 D: dissolution

 E: evaporation

 F: electrolysis

 G: recycling of a reagent (02 x 6 = 12 marks)

(iii) Identify the chemical compound used in B.

 CaCO₃ OR lime stone (03)

(iv) Identify the chemical species P, Q, R and T.

 P: Mg(OH)₂

 Q: HCl

 R: MgCl₂

 T: Cl₂ (02 x 4 = 8 marks)
(v) Give balanced chemical equations/half reactions for the processes taking place in B, C, D, and F.
(Note: When writing half reactions, identify the anode and cathode where applicable.)

B: CaCO₃ \rightarrow CaO + CO₂ (02)

Note: Award marks even if heating is not shown.

C: CaO + H₂O \rightarrow Ca(OH)₂ (02)
Ca(OH)₂ \rightarrow Ca²⁺ + 2OH⁻ (02)
Mg²⁺ + 2OH⁻ \rightarrow Mg(OH)₂ (02)

OR

CaO + H₂O \rightarrow Ca²⁺ + 2OH⁻ (04)
Mg²⁺ + 2OH⁻ \rightarrow Mg(OH)₂ (02)

OR

CaO + H₂O + Mg²⁺ \rightarrow Mg(OH)₂ + Ca²⁺ (06)

D: Mg(OH)₂ + 2HCl \rightarrow MgCl₂ + 2H₂O (02)

F: Anode – (C) 2Cl⁻ (l)/aq \rightarrow Cl₂ (g) + 2e (02 + 02)
Cathode – (Fe) Mg²⁺(l)/aq + 2e \rightarrow Mg(l) (02 + 02)

Note: Physical states are required for the award of marks for half reactions.

(vi) State the importance of the reaction occurring in G.

Here a product is recycled / reproduced. (03)

It is very cost effective. (03)

10(a): 50 marks
(b) (i) Consider the industries given below.

Coal power plants
Refrigeration and air conditioning
Transport
Agriculture
Animal farming

I. All five industries given above contribute to global warming. Identify the gaseous chemical species associated with each of these industries that contribute to global warming.

Coal power plants – CO₂
Refrigeration and air conditioning industry – CFC OR HFC OR HCFC
Transportation – CO₂
Agriculture – N₂O, CH₄
Animal farming – CH₄

(03 x 5 = 15 marks)

II. State three adverse climate changes that could occur due to global warming.

- Rise in sea level
- Frequent strong cyclones and tornadoes
- Severe floods in certain areas
- Reduction in rainfall in certain areas (severe droughts) / Desertification
- Sea water infusion to rivers
- Heavy rainfall in certain areas

(Any three)

(03 x 3 = 9 marks)

(ii) Identify the main industry/industries given in (i) above that contribute to

I. photochemical smog,
 Transportation

II. acid rain,
 Coal power plants and transportation

III. eutrophication.
 Agriculture and animal farming

(02 x 5 = 10 marks)
(iii) Due to the reduction in rainfall in Sri Lanka, inducing artificial rain has been tested near catchment areas of reservoirs that are used for hydro-power generation. In this process, fine particles of hygroscopic salts (NaCl, CaCl₂, NaBr) are sprayed to induce cloud formation by condensation of water vapour.

From the list given below, select the water quality parameters that are directly affected due to salts entering water around catchment areas. Give reasons for your choice briefly.

List of water quality parameters:
- pH, conductivity, turbidity, dissolved oxygen
- pH, turbidity and dissolved oxygen (02 + 02 + 02)

II. unaffected

- These salts do not undergo hydrolysis. Therefore, pH is unaffected.
- These salts are very soluble in water. Hence, ions do not contribute to turbidity.
- These salts do not react with O₂.

(c) The following questions are based on biodiesel production.

(i) State the raw materials used in the manufacture of biodiesel.

Vegetable oil / plant oil (palm oil etc.) and
CH₃OH / methanol / C₂H₅OH / ethanol/ alcohol/ ROH (05 + 05)

(ii) Name the main chemical compound present in each raw material where applicable.

Vegetable oil – triglycerides (05)

(iii) State the name of the chemical compound used as the catalyst in the manufacture of biodiesel in the school laboratory.

Sodium hydroxide (NaOH) / potassium hydroxide (KOH) (05)
(iv) Give a balanced chemical equation to show the synthesis of biodiesel using the chemical compounds stated in part (ii) above.

\[
\begin{align*}
\text{CH}_2\text{O} & \quad \text{O} \quad \text{C} \quad \text{R} \\
\text{CH} & \quad \text{O} \quad \text{C} \quad \text{R} \\
\text{CH}_2\text{O} & \quad \text{C} \quad \text{R} \\
& \quad \text{(triglyceride)}
\end{align*}
\]

\[\text{3CH}_3\text{OH} \quad \text{OR} \quad \frac{\text{3C}_2\text{H}_5\text{OH}}{} \quad \text{OR} \quad \frac{3\text{ROH}}{} \]

\[\text{3R} \quad \text{C} \quad \text{O} \quad \text{O} \quad \text{CH}_3 \]

(biodiesel)

\[\frac{\text{CH}_2\text{OH}}{} \quad \frac{\text{CH}_2\text{OH}}{} \quad \frac{\text{CH}_2\text{OH}}{(\text{glycerol})} \]

\[(20)\]

Note:

1. R could be written as \(R_1 \), \(R_2 \) and \(R_3 \). Equation should be balanced accordingly.

2. For correct balanced equation (20 marks). If equation is not balanced award (04) for each correct reactant and product.

3. \(\text{C}_2\text{H}_5\text{OH} \) and ROH may be accepted for this year ONLY.

(v) Identify a side reaction that would take place, along with its products, if the catalyst is used in excess.

Saponification reaction OR its description (05)

Product – soap (\(\text{R-COO Na}^+ \)) (05)

10(c): 50 marks